Vegetation Control in the Long-Term Self-Stabilization of the Liangzhou Oasis of the Upper Shiyang River Watershed of West-Central Gansu, Northwest China
This paper explores the relationship between vegetation in the Liangzhou Oasis in the Upper Shiyang River watershed (USRW) of west-central Gansu, China, and within-watershed precipitation, soil water storage, and oasis self-support. Oases along the base of the Qilian Mountains receive a significant...
Gespeichert in:
Veröffentlicht in: | Earth interactions 2009-12, Vol.13 (13), p.1-22 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper explores the relationship between vegetation in the Liangzhou Oasis in the Upper Shiyang River watershed (USRW) of west-central Gansu, China, and within-watershed precipitation, soil water storage, and oasis self-support. Oases along the base of the Qilian Mountains receive a significant portion of their water supply (over 90%) from surface and subsurface flow originating from the Qilian Mountains. Investigation of vegetation control on oasis water conditions in the USRW is based on an application of a process model of soil water hydrology. The model is used to simulate long-term soil water content (SWC) in the Liangzhou Oasis as a function of (i) monthly composites of Moderate Resolution Imaging Spectroradiometer (MODIS) images of land surface and mean air temperature, (ii) spatiotemporal calculations of monthly precipitation and relative humidity generated with the assistance of genetic algorithms (GAs), and (iii) a 80-m-resolution digital elevation model (DEM) of the area. Modeled removal of vegetation is shown to affect within-watershed precipitation and soil water storage by reducing the exchange of water vapor from the land surface to the air, increasing the air’s lifting condensation level by promoting drier air conditions, and causing the high-intensity precipitation band in the Qilian Mountains to weaken and to be displaced upward, leading to an overall reduction of water to the Liangzhou Oasis. |
---|---|
ISSN: | 1087-3562 1087-3562 |
DOI: | 10.1175/2009EI286.1 |