Sulfide persistence in oil field waters amended with nitrate and acetate

Nitrate amendment is normally an effective method for sulfide control in oil field-produced waters. However, this approach has occasionally failed to prevent sulfide accumulation, despite the presence of active nitrate-reducing bacterial populations. Here, we report our study of bulk chemical transf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of industrial microbiology & biotechnology 2009-12, Vol.36 (12), p.1499-1511
Hauptverfasser: Hulecki, Jordan C, Foght, Julia M, Gray, Murray R, Fedorak, Phillip M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nitrate amendment is normally an effective method for sulfide control in oil field-produced waters. However, this approach has occasionally failed to prevent sulfide accumulation, despite the presence of active nitrate-reducing bacterial populations. Here, we report our study of bulk chemical transformations in microcosms of oil field waters containing nitrate-reducing, sulfide-oxidizing bacteria, but lacking denitrifying heterotrophs. Amendment with combinations of nitrate, acetate, and phosphate altered the microbial sulfur and nitrogen transformations. Elemental sulfur produced by chemotrophic nitrate-reducing bacteria was re-reduced heterotrophically to sulfide. Ammonification, rather than denitrification, was the predominant pathway for nitrate reduction. The application of nitrite led to transient sulfide depletion, possibly due to higher rates of nitrite reduction. The addition of molybdate suppressed both the accumulation of sulfide and the heterotrophic reduction of nitrate. Therefore, sulfidogenesis was likely due to elemental sulfur-reducing heterotrophic bacteria, and the nitrate-reducing microbial community consisted mainly of facultatively chemotrophic microbes. This study describes one set of conditions for continued sulfidogenesis during nitrate reduction, with important implications for nitrate control of sulfide production in oil fields.
ISSN:1367-5435
1476-5535
DOI:10.1007/s10295-009-0639-3