Ionic conductivity and local structural features in Ce1−xSmxO2−x/2

Sm-Doped ceria is one of the most promising materials to be used as electrolyte in solid oxide fuel cells due to its remarkable ionic conductivity values in the intermediate temperature range. Transport properties and local structural features of Ce1−xSmxO2−x/2 (0.1 ≤ x ≤ 0.7) were studied by an imp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2018, Vol.20 (44), p.28338-28345
Hauptverfasser: Presto, S, Artini, C, Pani, M, Carnasciali, M M, Massardo, S, Viviani, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sm-Doped ceria is one of the most promising materials to be used as electrolyte in solid oxide fuel cells due to its remarkable ionic conductivity values in the intermediate temperature range. Transport properties and local structural features of Ce1−xSmxO2−x/2 (0.1 ≤ x ≤ 0.7) were studied by an impedance/μ-Raman spectroscopy coupled approach up to 1073 K. Results suggest that C-based nanosized defect clusters are responsible for the drop in ionic conductivity observed even at x = 0.2, i.e. at a Sm content lower than necessary to allow C domains to reach the percolation threshold through crystallites. Moreover, within the fluorite-type compositional region, with increasing the Sm content, defect clusters undergo a rearrangement resulting in the enlargement of C-based domains rather than in the increase of their number; at higher x, on the contrary, both the size and amount of C domains increase in parallel.
ISSN:1463-9076
1463-9084
DOI:10.1039/c8cp04186e