Anchored hybrid enrichment phylogenomics resolves the backbone of erebine moths
[Display omitted] •AHE captured sequence data for 658 loci across 71 erebine genera and 23 tribes.•A robust backbone phylogenetic hypothesis of Erebinae is proposed.•Similar backbone relationships are recovered from ML and gene-tree based analyses. The subfamily Erebinae (Lepidoptera, Erebidae) incl...
Gespeichert in:
Veröffentlicht in: | Molecular phylogenetics and evolution 2019-02, Vol.131, p.99-105 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
•AHE captured sequence data for 658 loci across 71 erebine genera and 23 tribes.•A robust backbone phylogenetic hypothesis of Erebinae is proposed.•Similar backbone relationships are recovered from ML and gene-tree based analyses.
The subfamily Erebinae (Lepidoptera, Erebidae) includes approximately 10,000 species with many still undescribed. It is one of the most diverse clades within the moth superfamily Noctuoidea and encompasses a diversity of ecological habits. Erebine caterpillars feed on a broad range of host plants including several economically important crops. Adults possess a unique array of adaptations for predator defense, including some of the most sensitive hearing organs (tympana) across the Lepidoptera and striking wing coloration to startle visual predators. Despite the relevance of these moths to agriculture and ecological research, a robust phylogenetic framework is lacking. Here we used anchored hybrid enrichment, a relatively new approach in phylogenomics, to resolve relationships among the subfamily. Using the recently developed Lep1 anchored hybrid enrichment probe set, 658 gene fragments with an average length of 320 bp were captured from an exemplar set of 75 erebine species, representing 73 genera and 23 tribes. While the total number of erebine tribes is not firmly established, this represents at least 75% of known tribal level diversity. Anchored hybrid enrichment data were partitioned by locus and by codon position for maximum likelihood phylogenetic analysis and coalescent-based species-tree approaches. Results from our study provided strong nodal support (BP ≥ 95) for nearly all nodes in the partitioned ML tree, solidifying many relationships that were previously uncertain or moderately supported based on morphology or a smaller number of gene fragments. Likelihood analyses confidently resolved the placement of Acantholipini as a sister tribe to Sypnini and all other Erebinae. The remaining tribes were placed in a single, strongly supported clade split into two major subclades. Additionally, 25 tropical species that did not have previous tribal assignments are confidently placed on the phylogeny. Statistical comparisons with Shimodaira-Hasegawa (SH) tests found that our maximum likelihood trees were significantly more likely than alternative hypotheses. This study demonstrates the utility of anchored phylogenomics for resolving relationships within subfamilies of Lepidoptera. |
---|---|
ISSN: | 1055-7903 1095-9513 |
DOI: | 10.1016/j.ympev.2018.10.038 |