Room-Temperature Continuous-Wave Operation of Organometal Halide Perovskite Lasers
Solution-processed organic–inorganic lead halide perovskites have recently emerged as promising gain media for tunable semiconductor lasers. However, optically pumped continuous-wave lasing at room temperature, a prerequisite for a laser diode, has not been realized so far. Here, we report lasing ac...
Gespeichert in:
Veröffentlicht in: | ACS nano 2018-11, Vol.12 (11), p.10968-10976 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Solution-processed organic–inorganic lead halide perovskites have recently emerged as promising gain media for tunable semiconductor lasers. However, optically pumped continuous-wave lasing at room temperature, a prerequisite for a laser diode, has not been realized so far. Here, we report lasing action in a surface-emitting distributed feedback methylammonium lead iodide (MAPbI3) perovskite laser on a silicon substrate at room temperature under continuous-wave optical pumping. This outstanding performance is achieved because of the ultralow lasing threshold of 13 W/cm2, which is enabled by thermal nanoimprint lithography that directly patterns perovskite into a high-Q cavity with large mode confinement, while at the same time, it improves perovskite’s emission characteristics. Our results represent a major step toward electrically pumped lasing in organic and thin-film materials as well as the insertion of perovskite lasers into photonic integrated circuits for applications in optical computing, sensing, and on-chip quantum information. |
---|---|
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/acsnano.8b04854 |