Neither Mosquito Saliva nor Immunity to Saliva Has a Detectable Effect on the Infectivity of Plasmodium Sporozoites Injected into Mice
Malaria infection is initiated when a female Anopheles mosquito probing for blood injects saliva, together with sporozoites, into the skin of its mammalian host. Prior studies had suggested that saliva may enhance sporozoite infectivity. Using rodent malaria models (Plasmodium berghei and P. yoelii)...
Gespeichert in:
Veröffentlicht in: | Infection and Immunity 2010-01, Vol.78 (1), p.545-551 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Malaria infection is initiated when a female Anopheles mosquito probing for blood injects saliva, together with sporozoites, into the skin of its mammalian host. Prior studies had suggested that saliva may enhance sporozoite infectivity. Using rodent malaria models (Plasmodium berghei and P. yoelii), we were unable to show that saliva had any detectable effect on sporozoite infectivity. This is encouraging for plans to immunize humans with washed, attenuated P. falciparum sporozoites because many individuals develop cutaneous, hypersensitivity reactions to mosquito saliva after repeated exposure. If washed sporozoites have no appreciable loss of infectivity, they likely do not have decreased immunogenicity; thus, vaccinees are unlikely to develop cutaneous reactions against mosquito saliva during attempted immunization with such sporozoites. Earlier studies also suggested that repeated prior exposure to mosquito saliva reduces infectivity of sporozoites injected by mosquitoes into sensitized hosts. However, our own studies show that prior exposure of mice to saliva had no detectable effect on numbers of sporozoites delivered by infected mosquitoes, the rate of disappearance of these sporozoites from the skin or infectivity of the sporozoites. Under natural conditions, sporozoites are delivered both to individuals who may exhibit cutaneous hypersensitivity to mosquito bite and to others who may have not yet developed such reactivity. It was tempting to hypothesize that differences in responsiveness to mosquito bite by different individuals might modulate the infectivity of sporozoites delivered into a milieu of changes induced by cutaneous hypersensitivity. Our results with rodent malaria models, however, were unable to support such a hypothesis. |
---|---|
ISSN: | 0019-9567 1098-5522 |
DOI: | 10.1128/IAI.00807-09 |