Selection of Variables in Cluster Analysis: An Empirical Comparison of Eight Procedures
Eight different variable selection techniques for model-based and non-model-based clustering are evaluated across a wide range of cluster structures. It is shown that several methods have difficulties when non-informative variables (i.e., random noise) are included in the model. Furthermore, the dis...
Gespeichert in:
Veröffentlicht in: | Psychometrika 2008-03, Vol.73 (1), p.125-144 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Eight different variable selection techniques for model-based and non-model-based clustering are evaluated across a wide range of cluster structures. It is shown that several methods have difficulties when non-informative variables (i.e., random noise) are included in the model. Furthermore, the distribution of the random noise greatly impacts the performance of nearly all of the variable selection procedures. Overall, a variable selection technique based on a variance-to-range weighting procedure coupled with the largest decreases in within-cluster sums of squares error performed the best. On the other hand, variable selection methods used in conjunction with finite mixture models performed the worst. |
---|---|
ISSN: | 0033-3123 1860-0980 |
DOI: | 10.1007/s11336-007-9019-y |