Modeling fire and landform influences on the distribution of old-growth pinyon-juniper woodland
Expansion of Pinus and Juniperus species into shrub steppe in semi-arid regions of the western United States has been widely documented and attributed in part to fire exclusion. If decreased fire frequency has been an important cause of woodland expansion, one would expect to find age structures dom...
Gespeichert in:
Veröffentlicht in: | Landscape ecology 2008-10, Vol.23 (8), p.931-943 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Expansion of Pinus and Juniperus species into shrub steppe in semi-arid regions of the western United States has been widely documented and attributed in part to fire exclusion. If decreased fire frequency has been an important cause of woodland expansion, one would expect to find age structures dominated by younger trees on more fire-prone sites, with old-growth pinyon-juniper woodland limited to sites with lower fire risk. We compared current old-growth distribution with spatial models for fire risk in a 19-km² watershed in central Nevada, USA. Multiple GIS models were developed to represent fire susceptibility, according to abiotic factors representing fuels and topographic barriers to fire spread. We also developed cellular automata models to generate fire susceptibility surfaces that additionally account for neighborhood effects. Rule-based GIS models failed to predict old-growth distribution better than random models. Cellular automata models incorporating spatial heterogeneity of site productivity predicted old-growth distribution better than random models but with low accuracy, ranging from 58% agreement at the single-pixel (0.09-ha) scale to 80% agreement for 20-pixel neighborhoods. The best statistical model for predicting old-growth occurrence included the negative effect of topographic convergence index (local wetness), and the positive effects of solar insolation and proximity to rock outcrops. Results support the hypothesis that old-growth woodlands in the Great Basin are more likely to occur on sites with low fire risk. However, weak relationships suggest that old-growth woodlands have not been confined to fire-safe sites. Conservation efforts should consider the landscape context of old-growth woodlands across a broad landscape, with an emphasis on conserving landscape variability in tree age structure. |
---|---|
ISSN: | 0921-2973 1572-9761 |
DOI: | 10.1007/s10980-008-9249-0 |