Large-Scale Dynamics of the Meiyu-Baiu Rainband: Environmental Forcing by the Westerly Jet
Meiyu-baiu is the major rainy season from central China to Japan brought by a zonally elongated rainband from June to mid-July. Large-scale characteristics and environmental forcing of this important phenomenon are investigated based on a reanalysis dataset. The meiyu-baiu rainband is accompanied by...
Gespeichert in:
Veröffentlicht in: | Journal of climate 2010-01, Vol.23 (1), p.113-134 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Meiyu-baiu is the major rainy season from central China to Japan brought by a zonally elongated rainband from June to mid-July. Large-scale characteristics and environmental forcing of this important phenomenon are investigated based on a reanalysis dataset. The meiyu-baiu rainband is accompanied by a trough of sea level pressure, horizontal shears, and sharp moisture gradients near the surface, a westerly jet tilted northward with height, and large northeastward moisture transport from the south.
The analysis here reveals the westerly jet as an important culprit for meiyu-baiu. Along the rainband, mean ascending motion corresponds well with a band of warm horizontal temperature advection in the midtroposphere throughout summer. This adiabatic induction of upward motion originates from the advection of warm air by the westerlies from the eastern flank of the Tibetan Plateau. The ascending motion both induces convection and is enhanced by the resultant condensational heating. The westerly jet anchors the meiyu-baiu rainband also by steering transient eddies, creating periods conducive to convection through convective instability and adiabatic updrafts. Indeed, in meiyu-baiu, the probability distribution of convective instability shows large spreads and is strongly skewed, with a sharp cutoff on the unstable side resulting from the effective removal of instability by convection. Thus, active weather disturbances in the westerly waveguide explain a paradox that convection is active in the meiyu-baiu rainband while mean convective instability is significantly higher to the south over the subtropical North Pacific warm pool. In addition to the westerly jet, low-level southerly winds over eastern China between the heat low over Asia and the subtropical high pressure belt over the Pacific are another important environmental forcing for meiyu-baiu by supplying moisture. A conceptual model for meiyu-baiu is presented, and its implications for seasonal and interannual variations are discussed. |
---|---|
ISSN: | 0894-8755 1520-0442 |
DOI: | 10.1175/2009jcli3128.1 |