De Novo Design of Phototheranostic Sensitizers Based on Structure-Inherent Targeting for Enhanced Cancer Ablation

Structure-inherent targeting (SIT) agents are of particular importance for clinical precision medicine; however, there still exists a great lack of SIT phototheranostics for simultaneous cancer diagnosis and targeted photodynamic therapy (PDT). Herein, for the first time, we propose a “one-for-all”...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2018-11, Vol.140 (46), p.15820-15826
Hauptverfasser: Li, Mingle, Long, Saran, Kang, Yao, Guo, Lianying, Wang, Jingyun, Fan, Jiangli, Du, Jianjun, Peng, Xiaojun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Structure-inherent targeting (SIT) agents are of particular importance for clinical precision medicine; however, there still exists a great lack of SIT phototheranostics for simultaneous cancer diagnosis and targeted photodynamic therapy (PDT). Herein, for the first time, we propose a “one-for-all” strategy by using the Förster resonance energy transfer (FRET) mechanism to construct such omnipotent SIT phototheranostics. Of note, this novel tactic can not only endow conventional sensitizers with highly effective native tumor-targeting potency but also simultaneously improve their photosensitization activities, resulting in dramatically boosted therapeutic index. After intravenous injection of the prepared SIT theranostic, the neoplastic sites are distinctly “lighted up” and distinguished from neighboring tissues, showing a near-infrared signal-to-background ratio value as high as 12.5. More importantly, benefiting from the FRET effect, markedly amplified light-harvesting ability and 1O2 production are demonstrated. Better still, other favorable features are also simultaneously achieved, including specific mitochondria anchoring, augmented cellular uptake (>13-fold), as well as ideal biocompatibility, all of which allow orders-of-magnitude promotion in anticancer efficiency both in vitro and in vivo. We believe this one-for-all SIT platform will provide a new idea for future cancer precision therapy.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.8b09117