Repression of yeast RNA polymerase III by stress leads to ubiquitylation and proteasomal degradation of its largest subunit, C160

Respiratory growth and various stress conditions repress RNA polymerase III (Pol III) transcription in Saccharomyces cerevisiae. Here we report a degradation of the largest Pol III catalytic subunit, C160 as a consequence of Pol III transcription repression. We observed C160 degradation in response...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochimica et biophysica acta. Gene regulatory mechanisms 2019-01, Vol.1862 (1), p.25-34
Hauptverfasser: Leśniewska, Ewa, Cieśla, Małgorzata, Boguta, Magdalena
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Respiratory growth and various stress conditions repress RNA polymerase III (Pol III) transcription in Saccharomyces cerevisiae. Here we report a degradation of the largest Pol III catalytic subunit, C160 as a consequence of Pol III transcription repression. We observed C160 degradation in response to transfer of yeast from fermentation to respiration conditions, as well as treatment with rapamycin or inhibition of nucleotide biosynthesis. We also detected ubiquitylated forms of C160 and demonstrated that C160 protein degradation is dependent on proteasome activity. A comparable time-course study of Pol III repression upon metabolic shift from fermentation to respiration shows that the transcription inhibition is correlated with Pol III dissociation from chromatin but that the degradation of C160 subunit is a downstream event. Despite blocking degradation of C160 by proteasome, Pol III-transcribed genes are under proper regulation. We postulate that the degradation of C160 is activated under stress conditions to reduce the amount of existing Pol III complex and prevent its de novo assembly. •Repression of RNA polymerase III by stress leads to degradation of C160 subunit•C160 protein is ubiquitylated and degraded in proteasome•Blocking of C160 degradation is uncoupled from inhibition of transcription
ISSN:1874-9399
1876-4320
DOI:10.1016/j.bbagrm.2018.10.007