The importance of productivity and seasonality for structuring small rodent diversity across a tropical elevation gradient

Photosynthetic productivity is a key determinant of the abundance and distribution of biodiversity around the world. The effect of this productivity on the distribution patterns of mammals is frequently invoked; however, it is seldom measured directly. In this study, we used Sherman live traps set i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oecologia 2019-06, Vol.190 (2), p.275-286
Hauptverfasser: Ramírez-Bautista, Arturo, Williams, John N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Photosynthetic productivity is a key determinant of the abundance and distribution of biodiversity around the world. The effect of this productivity on the distribution patterns of mammals is frequently invoked; however, it is seldom measured directly. In this study, we used Sherman live traps set in dry and rainy seasons across a 2300-m elevation gradient in southwestern Mexico to assess small rodent species distributions, and to relate these patterns to habitat structure, climate, and a well-accepted measure of photosynthetic productivity: the normalized difference vegetation index (NDVI). While habitat structure and climate helped explain some of the patterns observed, NDVI proved to be the most important contributing variable for most of the distribution models. We also found that partitioning the gradient-distribution model by trapping season revealed strong differences in terms of the effect of NDVI and the other explanatory variables. For example, lower elevations were associated with seasonal and year-round reductions in rodent diversity and were composed almost exclusively of granivore-based species assemblages. By contrast, the middle and upper elevations were more species rich, less affected by seasonality, and characterized by omnivorous species. Our results suggest that the positive productivity–diversity relationship found may be due, at least in part, to increased food resources and niche opportunities at more productive elevations. Increased diversity at the higher elevations may also be partially due to reductions in competition that result from productivity increases, as well as from the broader spectrum of feeding guild representation that it and the lack of seasonality allow.
ISSN:0029-8549
1432-1939
DOI:10.1007/s00442-018-4287-z