L-DOPA reduces model-free control of behavior by attenuating the transfer of value to action

Dopamine is a key neurotransmitter in action control. However, influential theories of dopamine function make conflicting predictions about the effect of boosting dopamine neurotransmission. Here, we tested if increases in dopamine tone by administration of L-DOPA upregulate reward learning as predi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2019-02, Vol.186, p.113-125
Hauptverfasser: Kroemer, Nils B., Lee, Ying, Pooseh, Shakoor, Eppinger, Ben, Goschke, Thomas, Smolka, Michael N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dopamine is a key neurotransmitter in action control. However, influential theories of dopamine function make conflicting predictions about the effect of boosting dopamine neurotransmission. Here, we tested if increases in dopamine tone by administration of L-DOPA upregulate reward learning as predicted by reinforcement learning theories, and if increases are specific for deliberative “model-based” control or reflexive “model-free” control. Alternatively, L-DOPA may impair learning as suggested by “value” or “thrift” theories of dopamine. To this end, we employed a two-stage Markov decision-task to investigate the effect of L-DOPA (randomized cross-over) on behavioral control while brain activation was measured using fMRI. L-DOPA led to attenuated model-free control of behavior as indicated by the reduced impact of reward on choice. Increased model-based control was only observed in participants with high working memory capacity. Furthermore, L-DOPA facilitated exploratory behavior, particularly after a stream of wins in the task. Correspondingly, in the brain, L-DOPA decreased the effect of reward at the outcome stage and when the next decision had to be made. Critically, reward-learning rates and prediction error signals were unaffected by L-DOPA, indicating that differences in behavior and brain response to reward were not driven by differences in learning. Taken together, our results suggest that L-DOPA reduces model-free control of behavior by attenuating the transfer of value to action. These findings provide support for the value and thrift accounts of dopamine and call for a refined integration of valuation and action signals in reinforcement learning models. •Theories make conflicting predictions about the effect of boosting dopamine.•Behaviorally, L-DOPA reduces the reflexive effect of reward (model-free control).•On average, L-DOPA does not change learning rates or model-based control.•In the brain, L-DOPA reduces reward outcome signals and their link to behavior.•Results support thrift and value theories of dopamine.
ISSN:1053-8119
1095-9572
DOI:10.1016/j.neuroimage.2018.10.075