Random Item IRT Models
It is common practice in IRT to consider items as fixed and persons as random. Both, continuous and categorical person parameters are most often random variables, whereas for items only continuous parameters are used and they are commonly of the fixed type, although exceptions occur. It is shown in...
Gespeichert in:
Veröffentlicht in: | Psychometrika 2008-12, Vol.73 (4), p.533-559 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is common practice in IRT to consider items as fixed and persons as random. Both, continuous and categorical person parameters are most often random variables, whereas for items only continuous parameters are used and they are commonly of the fixed type, although exceptions occur. It is shown in the present article that random item parameters make sense theoretically, and that in practice the random item approach is promising to handle several issues, such as the measurement of persons, the explanation of item difficulties, and trouble shooting with respect to DIF. In correspondence with these issues, three parts are included. All three rely on the Rasch model as the simplest model to study, and the same data set is used for all applications. First, it is shown that the Rasch model with fixed persons and random items is an interesting measurement model, both, in theory, and for its goodness of fit. Second, the linear logistic test model with an error term is introduced, so that the explanation of the item difficulties based on the item properties does not need to be perfect. Finally, two more models are presented: the random item profile model (RIP) and the random item mixture model (RIM). In the RIP, DIF is not considered a discrete phenomenon, and when a robust regression approach based on the RIP difficulties is applied, quite good DIF identification results are obtained. In the RIM, no prior anchor sets are defined, but instead a latent DIF class of items is used, so that posterior anchoring is realized (anchoring based on the item mixture). It is shown that both approaches are promising for the identification of DIF. |
---|---|
ISSN: | 0033-3123 1860-0980 |
DOI: | 10.1007/s11336-008-9092-x |