Integrated proteomic and metabolomic analysis of a reconstructed three-species microbial consortium for one-step fermentation of 2-keto-l-gulonic acid, the precursor of vitamin C

Abstract Microbial consortia, with the merits of strong stability, robustness, and multi-function, played critical roles in human health, bioenergy, and food manufacture, etc. On the basis of ‘build a consortium to understand it’, a novel microbial consortium consisted of Gluconobacter oxydans, Keto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of industrial microbiology & biotechnology 2019-01, Vol.46 (1), p.21-31
Hauptverfasser: Ma, Qian, Bi, Yan-Hui, Wang, En-Xu, Zhai, Bing-Bing, Dong, Xiu-Tao, Qiao, Bin, Ding, Ming-Zhu, Yuan, Ying-Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Microbial consortia, with the merits of strong stability, robustness, and multi-function, played critical roles in human health, bioenergy, and food manufacture, etc. On the basis of ‘build a consortium to understand it’, a novel microbial consortium consisted of Gluconobacter oxydans, Ketogulonicigenium vulgare and Bacillus endophyticus was reconstructed to produce 2-keto-l-gulonic acid (2-KGA), the precursor of vitamin C. With this synthetic consortium, 73.7 g/L 2-KGA was obtained within 30 h, which is comparable to the conventional industrial method. A combined time-series proteomic and metabolomic analysis of the fermentation process was conducted to further investigate the cell–cell interaction. The results suggested that the existence of B. endophyticus and G. oxydans together promoted the growth of K. vulgare by supplying additional nutrients, and promoted the 2-KGA production by supplying more substrate. Meanwhile, the growth of B. endophyticus and G. oxydans was compromised from the competition of the nutrients by K. vulgare, enabling the efficient production of 2-KGA. This study provides valuable guidance for further study of synthetic microbial consortia.
ISSN:1367-5435
1476-5535
DOI:10.1007/s10295-018-2096-3