Targeting surface nucleolin induces autophagy-dependent cell death in pancreatic cancer via AMPK activation
Pancreatic cancer remains one of the deadliest human cancers despite current advances in conventional therapeutics including surgery and adjuvant therapies. Here, we showed that LZ1, a peptide derived from a snake venom cathelicidin, significantly inhibited growth of pancreatic cancer cells by induc...
Gespeichert in:
Veröffentlicht in: | Oncogene 2019-03, Vol.38 (11), p.1832-1844 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pancreatic cancer remains one of the deadliest human cancers despite current advances in conventional therapeutics including surgery and adjuvant therapies. Here, we showed that LZ1, a peptide derived from a snake venom cathelicidin, significantly inhibited growth of pancreatic cancer cells by inducing autophagy-dependent cell death both in vitro and in vivo. The LZ1-induced cell death was blocked by pharmacological or genetic inhibition of autophagy. In orthotopic model of pancreatic cancer, systemic administration of LZ1 (1–4 mg/kg) exhibited remarkable antitumor efficacy, significantly prolonged mice survival, and showed negligible adverse effects by comparison with gemcitabine (20 mg/kg). Mechanistic studies revealed that LZ1 acts through binding to nucleolin, whose expression on cell surface is frequently increased in pancreatic cancer cells. LZ1 binding triggers degradation of surface-expressed nucleolin. This leads to activation of 5′-AMP kinase which results in suppression of mTORC1 activity and induction of autophagic flux. These data suggest that LZ1, targeting nucleolin–AMPK–autophagy axis, is a promising lead for the development of therapeutic agents against pancreatic cancer. |
---|---|
ISSN: | 0950-9232 1476-5594 |
DOI: | 10.1038/s41388-018-0556-x |