Laboratory model of the Obukhov geostrophic vortex
The results of laboratory modeling of geostrophic adjustment in a shallow-water layer in rotating paraboloid are presented. According to the Rossby-Obukhov theory, this process excites nonstationary wave and stationary vortex (geostrophic) components of motion in a rotating fluid. In our experiments...
Gespeichert in:
Veröffentlicht in: | Izvestiya. Atmospheric and oceanic physics 2009-08, Vol.45 (4), p.403-410 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The results of laboratory modeling of geostrophic adjustment in a shallow-water layer in rotating paraboloid are presented. According to the Rossby-Obukhov theory, this process excites nonstationary wave and stationary vortex (geostrophic) components of motion in a rotating fluid. In our experiments, the wave and vortex components were excited by extracting a preliminarily imbedded hemisphere (which made the initial distribution of the depth of the fluid inhomogeneous) from the central area of a rotating vessel with a parabolic base. Under this excitation technique, a prominent cyclonic eddy is formed in the central portion; the structure of this eddy is satisfactorily described within the linear theory of adjustment. Along with the shallow-water experiments, the published experimental data on modeling geostrophic adjustment in a two-layer medium are analyzed. A simple analytic solution to the corresponding problem of the adjustment theory is obtained, and this solution agrees with the experiment. |
---|---|
ISSN: | 0001-4338 1555-628X |
DOI: | 10.1134/S000143380904001X |