PRICING DISCRETELY MONITORED BARRIER OPTIONS AND DEFAULTABLE BONDS IN LÉVY PROCESS MODELS: A FAST HILBERT TRANSFORM APPROACH

This paper presents a novel method to price discretely monitored single‐ and double‐barrier options in Lévy process‐based models. The method involves a sequential evaluation of Hilbert transforms of the product of the Fourier transform of the value function at the previous barrier monitoring date an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical finance 2008-07, Vol.18 (3), p.337-384
Hauptverfasser: Feng, Liming, Linetsky, Vadim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a novel method to price discretely monitored single‐ and double‐barrier options in Lévy process‐based models. The method involves a sequential evaluation of Hilbert transforms of the product of the Fourier transform of the value function at the previous barrier monitoring date and the characteristic function of the (Esscher transformed) Lévy process. A discrete approximation with exponentially decaying errors is developed based on the Whittaker cardinal series (Sinc expansion) in Hardy spaces of functions analytic in a strip. An efficient computational algorithm is developed based on the fast Hilbert transform that, in turn, relies on the FFT‐based Toeplitz matrix–vector multiplication. Our method also provides a natural framework for credit risk applications, where the firm value follows an exponential Lévy process and default occurs at the first time the firm value is below the default barrier on one of a discrete set of monitoring dates.
ISSN:0960-1627
1467-9965
DOI:10.1111/j.1467-9965.2008.00338.x