Support vector machines with genetic fuzzy feature transformation for biomedical data classification

In this paper, we present a genetic fuzzy feature transformation method for support vector machines (SVMs) to do more accurate data classification. Given data are first transformed into a high feature space by a fuzzy system, and then SVMs are used to map data into a higher feature space and then co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information sciences 2007-01, Vol.177 (2), p.476-489
Hauptverfasser: Jin, Bo, Tang, Y.C., Zhang, Yan-Qing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present a genetic fuzzy feature transformation method for support vector machines (SVMs) to do more accurate data classification. Given data are first transformed into a high feature space by a fuzzy system, and then SVMs are used to map data into a higher feature space and then construct the hyperplane to make a final decision. Genetic algorithms are used to optimize the fuzzy feature transformation so as to use the newly generated features to help SVMs do more accurate biomedical data classification under uncertainty. The experimental results show that the new genetic fuzzy SVMs have better generalization abilities than the traditional SVMs in terms of prediction accuracy.
ISSN:0020-0255
1872-6291
DOI:10.1016/j.ins.2006.03.015