Lung volumes, respiratory mechanics and dynamic strain during general anaesthesia
Driving pressure (ΔP) represents tidal volume normalised to respiratory system compliance (CRS) and is a novel parameter to target ventilator settings. We conducted a study to determine whether CRS and ΔP reflect aerated lung volume and dynamic strain during general anaesthesia. Twenty non-obese pat...
Gespeichert in:
Veröffentlicht in: | British journal of anaesthesia : BJA 2018-11, Vol.121 (5), p.1156-1165 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Driving pressure (ΔP) represents tidal volume normalised to respiratory system compliance (CRS) and is a novel parameter to target ventilator settings. We conducted a study to determine whether CRS and ΔP reflect aerated lung volume and dynamic strain during general anaesthesia.
Twenty non-obese patients undergoing open abdominal surgery received three PEEP levels (2, 7, or 12 cm H2O) in random order with constant tidal volume ventilation. Respiratory mechanics, lung volumes, and alveolar recruitment were measured to assess end-expiratory aerated volume, which was compared with the patient's individual predicted functional residual capacity in supine position (FRCp).
CRS was linearly related to aerated volume and ΔP to dynamic strain at PEEP of 2 cm H2O (intraoperative FRC) (r=0.72 and r=0.73, both P |
---|---|
ISSN: | 0007-0912 1471-6771 |
DOI: | 10.1016/j.bja.2018.03.022 |