Fully On-Chip Single-Photon Hanbury-Brown and Twiss Experiment on a Monolithic Semiconductor–Superconductor Platform
Fully integrated quantum photonic circuits show a clear advantage in terms of stability and scalability compared to tabletop implementations. They will constitute a fundamental breakthrough in integrated quantum technologies, as a matter of example, in quantum simulation and quantum computation. Des...
Gespeichert in:
Veröffentlicht in: | Nano letters 2018-11, Vol.18 (11), p.6892-6897 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fully integrated quantum photonic circuits show a clear advantage in terms of stability and scalability compared to tabletop implementations. They will constitute a fundamental breakthrough in integrated quantum technologies, as a matter of example, in quantum simulation and quantum computation. Despite the fact that only a few building blocks are strictly necessary, their simultaneous realization is highly challenging. This is especially true for the simultaneous implementation of all three key components on the same chip: single-photon sources, photonic logic, and single-photon detectors. Here, we present a fully integrated Hanbury-Brown and Twiss setup on a micrometer-sized footprint consisting of a GaAs waveguide embedding quantum dots as single-photon sources, a waveguide beamsplitter, and two superconducting nanowire single-photon detectors. This enables a second-order correlation measurement on the single-photon level under both continuous-wave and pulsed resonant excitation. The presented proof-of-principle experiment proves the simultaneous realization and operation of all three key building blocks and therefore a major step towards fully integrated quantum optical chips. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.8b02794 |