Development of Methane-Utilizing Mixed Cultures for the Production of Polyhydroxyalkanoates (PHAs) from Anaerobic Digester Sludge
The fundamental components required for scaling up the production of biogas-based biopolymers can be provided through a single process, that is, anaerobic digestion (AD). In this research, the possibility of enriching methane-utilizing mixed cultures from the AD process was explored as well as their...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2018-11, Vol.52 (21), p.12376-12387 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The fundamental components required for scaling up the production of biogas-based biopolymers can be provided through a single process, that is, anaerobic digestion (AD). In this research, the possibility of enriching methane-utilizing mixed cultures from the AD process was explored as well as their capability to accumulate polyhydroxyalkanoates (PHAs). For almost 70 days of operation in a fed-batch cyclic mode, the specific growth rate was 0.078 ± 0.005 h–1 and the biomass yield was 0.7 ± 0.08 mg-VSS/mg-CH4. Adjusting the nitrogen levels in AD centrate resulted in results comparable to those obtained with a synthetic medium. The enriched culture could accumulate up to 51 ± 2% PHB. On the other hand, when the culturing medium was supplemented with valeric acid, the enriched bacteria were able to produce polyhydroxybutyrate-co-valerate (PHBV) up to 52 ± 6% with an HV percentage of 33 ± 5%. Increasing the valeric acid concentration in the culturing medium above 100 mg/L decreased the overall amount of PHBV by 60%, whereas the number of HV units incorporated was not affected. Changing the methane-to-oxygen ratio (M/O) from 1:1 to 4:1 caused an almost 80% decline in PHB accumulation. In addition, M/O had a significant effect on the fraction composition of PHBV at different valeric acid concentrations. |
---|---|
ISSN: | 0013-936X 1520-5851 |
DOI: | 10.1021/acs.est.8b04142 |