A method of error adjustment for marine gravity with application to Mean Dynamic Topography in the northern North Atlantic
International compilations of marine gravity, such as the International Gravity Bureau (BGI) contain tens of millions of point data. Lemoine et al. (The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96, NASA/TP-1998-206861) chose not to i...
Gespeichert in:
Veröffentlicht in: | Journal of geodesy 2009-02, Vol.83 (2), p.161-174 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | International compilations of marine gravity, such as the International Gravity Bureau (BGI) contain tens of millions of point data. Lemoine et al. (The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96, NASA/TP-1998-206861) chose not to include any marine gravity in the construction of the global gravity model EGM96. Instead they used synthetic anomalies derived from altimetry, so that no independent information about Mean Dynamic Topography (MDT) can be deduced. Software has been developed not only to identify and correct those aspects of marine gravity data that are unreliable, but to do so in a way that can be applied to very large, ocean-wide data sets. First, we select only straight-line parts of ship-tracks and fit each one with a high-degree series of Chebyshev polynomials, whose misfit standard deviation is
σ
line
and measures the
random error
associated with point gravity data. Then, network adjustment determines how the gravity datum is offset for each survey. A free least squares adjustment minimises the gravity anomaly mismatch at line-crossing points, using
σ
line
to weight the estimate for each line. For a long, well crossed survey, the instrumental drift rate is also adjusted. For some 42,000 cross-over points in the northern Atlantic Ocean, network adjustment reduces the unweighted standard deviation of the cross-over errors from 4.03 to 1.58 mGal; when quality weighted, the statistic reduces from 1.32 to 0.39 mGal. The geodetic MDT is calculated combining the adjusted gravity anomalies and satellite altimetry, and a priori global ocean model through a new algorithm called the Iterative Combination Method. This paper reports a first demonstration that geodetic oceanography can characterise the details of basin wide ocean circulation with a resolution better than global ocean circulation models. The result matches regional models of ocean circulation from hydrography measurements (Geophys Res Lett 29:1896, 2002; J Geophys Res 108:3251, 2003). |
---|---|
ISSN: | 0949-7714 1432-1394 |
DOI: | 10.1007/s00190-008-0249-2 |