El Niño–Induced Tropical Droughts in Climate Change Projections
El Niño brings widespread drought (i.e., precipitation deficit) to the tropics. Stronger or more frequent El Niño events in the future and/or their intersection with local changes in the mean climate toward a future with reduced precipitation would exacerbate drought risk in highly vulnerable tropic...
Gespeichert in:
Veröffentlicht in: | Journal of climate 2009-12, Vol.22 (23), p.6456-6476 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | El Niño brings widespread drought (i.e., precipitation deficit) to the tropics. Stronger or more frequent El Niño events in the future and/or their intersection with local changes in the mean climate toward a future with reduced precipitation would exacerbate drought risk in highly vulnerable tropical areas. Projected changes in El Niño characteristics and associated teleconnections are investigated between the twentieth and twenty-first centuries. For climate change models that reproduce realistic oceanic variability of the El Niño–Southern Oscillation (ENSO) phenomenon, results suggest no robust changes in the strength or frequency of El Niño events. These models exhibit realistic patterns, magnitude, and spatial extent of El Niño–induced drought patterns in the twentieth century, and the teleconnections are not projected to change in the twenty-first century, although a possible slight reduction in the spatial extent of droughts is indicated over the tropics as a whole. All model groups investigated show similar changes in mean precipitation for the end of the twenty-first century, with increased precipitation projected between 10°S and 10°N, independent of the ability of the models to replicate ENSO variability. These results suggest separability between climate change and ENSO-like climate variability in the tropics. As El Niño–induced precipitation drought patterns are not projected to change, the observed twentieth-century variability is used in combination with model-projected changes in mean precipitation for assessing year-to-year drought risk in the twenty-first century. Results suggest more locally consistent changes in regional drought risk among models with good fidelity in reproducing ENSO variability. |
---|---|
ISSN: | 0894-8755 1520-0442 |
DOI: | 10.1175/2009jcli3185.1 |