Raman spectroscopy as a novel tool for fast characterization of the chemical composition of perivascular adipose tissue

One of the new targets of untapped therapeutic potential is perivascular adipose tissue (pVAT). pVAT releases a plethora of pro- and anti-inflammatory agents and is involved in the inflammatory response of the vascular wall, playing a key role in various cardiovascular pathologies. Both fiber optic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analyst (London) 2018-12, Vol.143 (24), p.5999-6005
Hauptverfasser: Czamara, Krzysztof, Majka, Zuzanna, Fus, Aleksandra, Matjasik, Kamila, Pacia, Marta Z, Sternak, Magdalena, Chlopicki, Stefan, Kaczor, Agnieszka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One of the new targets of untapped therapeutic potential is perivascular adipose tissue (pVAT). pVAT releases a plethora of pro- and anti-inflammatory agents and is involved in the inflammatory response of the vascular wall, playing a key role in various cardiovascular pathologies. Both fiber optic Raman spectroscopy with a high-spatial resolution probe and Raman microscopy were applied to study various types of adipose tissue with the emphasis on pVATs of the thoracic and abdominal aorta and the mesenteric artery, as well as epididymal and interscapular adipose tissue for comparison. Our results demonstrated that the lipid unsaturation degree was clearly distinct in various types of adipose tissue and was influenced by the age of animals. In particular, the basal unsaturation level of pVATs of the abdominal aorta and the mesenteric artery was considerably higher than that of the thoracic aorta and a significant increase of the unsaturation level of pVAT with age was observed showing that aging has a considerable impact on the pVAT's chemical composition. Overall, our results show that Raman spectroscopy is a sensitive tool to determine the perivascular adipose tissue chemical composition that appears to be vascular-bed specific.
ISSN:0003-2654
1364-5528
DOI:10.1039/c8an01307a