The p‐Orbital Delocalization of Main‐Group Metals to Boost CO2 Electroreduction
Enhancing the p‐orbital delocalization of a Bi catalyst (termed as POD‐Bi) via layer coupling of the short inter‐layer Bi−Bi bond facilitates the adsorption of intermediate *OCHO of CO2 and thus boosts the CO2 reduction reaction (CO2RR) rate to formate. X‐ray absorption fine spectroscopy shows that...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2018-12, Vol.57 (49), p.16114-16119 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16119 |
---|---|
container_issue | 49 |
container_start_page | 16114 |
container_title | Angewandte Chemie International Edition |
container_volume | 57 |
creator | He, Sisi Ni, Fenglou Ji, Yujin Wang, Lie Wen, Yunzhou Bai, Haipeng Liu, Gejun Zhang, Ye Li, Youyong Zhang, Bo Peng, Huisheng |
description | Enhancing the p‐orbital delocalization of a Bi catalyst (termed as POD‐Bi) via layer coupling of the short inter‐layer Bi−Bi bond facilitates the adsorption of intermediate *OCHO of CO2 and thus boosts the CO2 reduction reaction (CO2RR) rate to formate. X‐ray absorption fine spectroscopy shows that the POD‐Bi catalyst has a shortened inter‐layer bond after the catalysts are electrochemically reduced in situ from original BiOCl nanosheets. The catalyst on a glassy carbon electrode exhibits a record current density of 57 mA cm−2 (twice the state‐of‐the‐art catalyst) at −1.16 V vs. RHE with an excellent formate Faradic efficiency (FE) of 95 %. The catalyst has a record half‐cell formate power conversion efficiency of 79 % at a current density of 100 mA cm−2 with 93 % formate FE when applied in a flow‐cell system. The highest rate of the CO2RR production reported (391 mg h−1 cm2) was achieved at a current density of 500 mA cm−2 with formate FE of 91 % at high CO2 pressure.
A bismuth catalyst with p‐orbital delocalization exhibits the highest rate of CO2 reduction reaction ever reported (391 mg h−1 cm2 at a current density of 500 mA cm−2 with formate Faradaic efficiency of 91 %), which is twice the state‐of‐the‐art synthesized catalysts. Simulations reveal that the p‐orbital localization facilitates adsorption of intermediate *OCHO of CO2 and hence the formation of formate. |
doi_str_mv | 10.1002/anie.201810538 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2119930833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2119930833</sourcerecordid><originalsourceid>FETCH-LOGICAL-g3038-c5fb46ddd7263b5e7f996e73e898495eccbb4b6c23230b7cad9e5d02a363548b3</originalsourceid><addsrcrecordid>eNpd0L1OwzAQB3ALgUQprMyWWFhSbF8c22MppVQqdKDMkeM44CqNQz6EysQj8Iw8Ca6KOjDdnfS70-mP0CUlI0oIu9GVsyNGqKSEgzxCA8oZjUAIOA59DBAJyekpOmvbdfBSkmSAnldvFtc_X9_LJnOdLvGdLb3RpfvUnfMV9gV-1K4KYNb4vsaPNqAWdx7fet92eLJkeFpa0zW-sXlvdkvn6KQIyF781SF6uZ-uJg_RYjmbT8aL6BUIyMjwIouTPM8FSyDjVhRKJVaAlUrGiltjsizOEsOAAcmE0bmyPCdMQwI8lhkM0fX-bt349962XbpxrbFlqSvr-zZllCoFRAIEevWPrn3fVOG7oEDEIBTjQam9-nCl3aZ14za62aaUpLuA013A6SHgdPw0nx4m-AVTt3Js</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2137437925</pqid></control><display><type>article</type><title>The p‐Orbital Delocalization of Main‐Group Metals to Boost CO2 Electroreduction</title><source>Wiley Online Library</source><creator>He, Sisi ; Ni, Fenglou ; Ji, Yujin ; Wang, Lie ; Wen, Yunzhou ; Bai, Haipeng ; Liu, Gejun ; Zhang, Ye ; Li, Youyong ; Zhang, Bo ; Peng, Huisheng</creator><creatorcontrib>He, Sisi ; Ni, Fenglou ; Ji, Yujin ; Wang, Lie ; Wen, Yunzhou ; Bai, Haipeng ; Liu, Gejun ; Zhang, Ye ; Li, Youyong ; Zhang, Bo ; Peng, Huisheng</creatorcontrib><description>Enhancing the p‐orbital delocalization of a Bi catalyst (termed as POD‐Bi) via layer coupling of the short inter‐layer Bi−Bi bond facilitates the adsorption of intermediate *OCHO of CO2 and thus boosts the CO2 reduction reaction (CO2RR) rate to formate. X‐ray absorption fine spectroscopy shows that the POD‐Bi catalyst has a shortened inter‐layer bond after the catalysts are electrochemically reduced in situ from original BiOCl nanosheets. The catalyst on a glassy carbon electrode exhibits a record current density of 57 mA cm−2 (twice the state‐of‐the‐art catalyst) at −1.16 V vs. RHE with an excellent formate Faradic efficiency (FE) of 95 %. The catalyst has a record half‐cell formate power conversion efficiency of 79 % at a current density of 100 mA cm−2 with 93 % formate FE when applied in a flow‐cell system. The highest rate of the CO2RR production reported (391 mg h−1 cm2) was achieved at a current density of 500 mA cm−2 with formate FE of 91 % at high CO2 pressure.
A bismuth catalyst with p‐orbital delocalization exhibits the highest rate of CO2 reduction reaction ever reported (391 mg h−1 cm2 at a current density of 500 mA cm−2 with formate Faradaic efficiency of 91 %), which is twice the state‐of‐the‐art synthesized catalysts. Simulations reveal that the p‐orbital localization facilitates adsorption of intermediate *OCHO of CO2 and hence the formation of formate.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201810538</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>bismuth ; Carbon dioxide ; Catalysis ; Catalysts ; Chemical reduction ; CO2 electroreduction ; Current density ; delocalization ; Energy conversion efficiency ; formate ; Glassy carbon ; heterogeneous catalysis ; Iron ; Metals ; Spectroscopy ; X ray spectra</subject><ispartof>Angewandte Chemie International Edition, 2018-12, Vol.57 (49), p.16114-16119</ispartof><rights>2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2142-2945</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201810538$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201810538$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>He, Sisi</creatorcontrib><creatorcontrib>Ni, Fenglou</creatorcontrib><creatorcontrib>Ji, Yujin</creatorcontrib><creatorcontrib>Wang, Lie</creatorcontrib><creatorcontrib>Wen, Yunzhou</creatorcontrib><creatorcontrib>Bai, Haipeng</creatorcontrib><creatorcontrib>Liu, Gejun</creatorcontrib><creatorcontrib>Zhang, Ye</creatorcontrib><creatorcontrib>Li, Youyong</creatorcontrib><creatorcontrib>Zhang, Bo</creatorcontrib><creatorcontrib>Peng, Huisheng</creatorcontrib><title>The p‐Orbital Delocalization of Main‐Group Metals to Boost CO2 Electroreduction</title><title>Angewandte Chemie International Edition</title><description>Enhancing the p‐orbital delocalization of a Bi catalyst (termed as POD‐Bi) via layer coupling of the short inter‐layer Bi−Bi bond facilitates the adsorption of intermediate *OCHO of CO2 and thus boosts the CO2 reduction reaction (CO2RR) rate to formate. X‐ray absorption fine spectroscopy shows that the POD‐Bi catalyst has a shortened inter‐layer bond after the catalysts are electrochemically reduced in situ from original BiOCl nanosheets. The catalyst on a glassy carbon electrode exhibits a record current density of 57 mA cm−2 (twice the state‐of‐the‐art catalyst) at −1.16 V vs. RHE with an excellent formate Faradic efficiency (FE) of 95 %. The catalyst has a record half‐cell formate power conversion efficiency of 79 % at a current density of 100 mA cm−2 with 93 % formate FE when applied in a flow‐cell system. The highest rate of the CO2RR production reported (391 mg h−1 cm2) was achieved at a current density of 500 mA cm−2 with formate FE of 91 % at high CO2 pressure.
A bismuth catalyst with p‐orbital delocalization exhibits the highest rate of CO2 reduction reaction ever reported (391 mg h−1 cm2 at a current density of 500 mA cm−2 with formate Faradaic efficiency of 91 %), which is twice the state‐of‐the‐art synthesized catalysts. Simulations reveal that the p‐orbital localization facilitates adsorption of intermediate *OCHO of CO2 and hence the formation of formate.</description><subject>bismuth</subject><subject>Carbon dioxide</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>CO2 electroreduction</subject><subject>Current density</subject><subject>delocalization</subject><subject>Energy conversion efficiency</subject><subject>formate</subject><subject>Glassy carbon</subject><subject>heterogeneous catalysis</subject><subject>Iron</subject><subject>Metals</subject><subject>Spectroscopy</subject><subject>X ray spectra</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpd0L1OwzAQB3ALgUQprMyWWFhSbF8c22MppVQqdKDMkeM44CqNQz6EysQj8Iw8Ca6KOjDdnfS70-mP0CUlI0oIu9GVsyNGqKSEgzxCA8oZjUAIOA59DBAJyekpOmvbdfBSkmSAnldvFtc_X9_LJnOdLvGdLb3RpfvUnfMV9gV-1K4KYNb4vsaPNqAWdx7fet92eLJkeFpa0zW-sXlvdkvn6KQIyF781SF6uZ-uJg_RYjmbT8aL6BUIyMjwIouTPM8FSyDjVhRKJVaAlUrGiltjsizOEsOAAcmE0bmyPCdMQwI8lhkM0fX-bt349962XbpxrbFlqSvr-zZllCoFRAIEevWPrn3fVOG7oEDEIBTjQam9-nCl3aZ14za62aaUpLuA013A6SHgdPw0nx4m-AVTt3Js</recordid><startdate>20181203</startdate><enddate>20181203</enddate><creator>He, Sisi</creator><creator>Ni, Fenglou</creator><creator>Ji, Yujin</creator><creator>Wang, Lie</creator><creator>Wen, Yunzhou</creator><creator>Bai, Haipeng</creator><creator>Liu, Gejun</creator><creator>Zhang, Ye</creator><creator>Li, Youyong</creator><creator>Zhang, Bo</creator><creator>Peng, Huisheng</creator><general>Wiley Subscription Services, Inc</general><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2142-2945</orcidid></search><sort><creationdate>20181203</creationdate><title>The p‐Orbital Delocalization of Main‐Group Metals to Boost CO2 Electroreduction</title><author>He, Sisi ; Ni, Fenglou ; Ji, Yujin ; Wang, Lie ; Wen, Yunzhou ; Bai, Haipeng ; Liu, Gejun ; Zhang, Ye ; Li, Youyong ; Zhang, Bo ; Peng, Huisheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g3038-c5fb46ddd7263b5e7f996e73e898495eccbb4b6c23230b7cad9e5d02a363548b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>bismuth</topic><topic>Carbon dioxide</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>CO2 electroreduction</topic><topic>Current density</topic><topic>delocalization</topic><topic>Energy conversion efficiency</topic><topic>formate</topic><topic>Glassy carbon</topic><topic>heterogeneous catalysis</topic><topic>Iron</topic><topic>Metals</topic><topic>Spectroscopy</topic><topic>X ray spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Sisi</creatorcontrib><creatorcontrib>Ni, Fenglou</creatorcontrib><creatorcontrib>Ji, Yujin</creatorcontrib><creatorcontrib>Wang, Lie</creatorcontrib><creatorcontrib>Wen, Yunzhou</creatorcontrib><creatorcontrib>Bai, Haipeng</creatorcontrib><creatorcontrib>Liu, Gejun</creatorcontrib><creatorcontrib>Zhang, Ye</creatorcontrib><creatorcontrib>Li, Youyong</creatorcontrib><creatorcontrib>Zhang, Bo</creatorcontrib><creatorcontrib>Peng, Huisheng</creatorcontrib><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Sisi</au><au>Ni, Fenglou</au><au>Ji, Yujin</au><au>Wang, Lie</au><au>Wen, Yunzhou</au><au>Bai, Haipeng</au><au>Liu, Gejun</au><au>Zhang, Ye</au><au>Li, Youyong</au><au>Zhang, Bo</au><au>Peng, Huisheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The p‐Orbital Delocalization of Main‐Group Metals to Boost CO2 Electroreduction</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2018-12-03</date><risdate>2018</risdate><volume>57</volume><issue>49</issue><spage>16114</spage><epage>16119</epage><pages>16114-16119</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Enhancing the p‐orbital delocalization of a Bi catalyst (termed as POD‐Bi) via layer coupling of the short inter‐layer Bi−Bi bond facilitates the adsorption of intermediate *OCHO of CO2 and thus boosts the CO2 reduction reaction (CO2RR) rate to formate. X‐ray absorption fine spectroscopy shows that the POD‐Bi catalyst has a shortened inter‐layer bond after the catalysts are electrochemically reduced in situ from original BiOCl nanosheets. The catalyst on a glassy carbon electrode exhibits a record current density of 57 mA cm−2 (twice the state‐of‐the‐art catalyst) at −1.16 V vs. RHE with an excellent formate Faradic efficiency (FE) of 95 %. The catalyst has a record half‐cell formate power conversion efficiency of 79 % at a current density of 100 mA cm−2 with 93 % formate FE when applied in a flow‐cell system. The highest rate of the CO2RR production reported (391 mg h−1 cm2) was achieved at a current density of 500 mA cm−2 with formate FE of 91 % at high CO2 pressure.
A bismuth catalyst with p‐orbital delocalization exhibits the highest rate of CO2 reduction reaction ever reported (391 mg h−1 cm2 at a current density of 500 mA cm−2 with formate Faradaic efficiency of 91 %), which is twice the state‐of‐the‐art synthesized catalysts. Simulations reveal that the p‐orbital localization facilitates adsorption of intermediate *OCHO of CO2 and hence the formation of formate.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.201810538</doi><tpages>6</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-2142-2945</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2018-12, Vol.57 (49), p.16114-16119 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_2119930833 |
source | Wiley Online Library |
subjects | bismuth Carbon dioxide Catalysis Catalysts Chemical reduction CO2 electroreduction Current density delocalization Energy conversion efficiency formate Glassy carbon heterogeneous catalysis Iron Metals Spectroscopy X ray spectra |
title | The p‐Orbital Delocalization of Main‐Group Metals to Boost CO2 Electroreduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A41%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20p%E2%80%90Orbital%20Delocalization%20of%20Main%E2%80%90Group%20Metals%20to%20Boost%20CO2%20Electroreduction&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=He,%20Sisi&rft.date=2018-12-03&rft.volume=57&rft.issue=49&rft.spage=16114&rft.epage=16119&rft.pages=16114-16119&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.201810538&rft_dat=%3Cproquest_wiley%3E2119930833%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2137437925&rft_id=info:pmid/&rfr_iscdi=true |