The p‐Orbital Delocalization of Main‐Group Metals to Boost CO2 Electroreduction

Enhancing the p‐orbital delocalization of a Bi catalyst (termed as POD‐Bi) via layer coupling of the short inter‐layer Bi−Bi bond facilitates the adsorption of intermediate *OCHO of CO2 and thus boosts the CO2 reduction reaction (CO2RR) rate to formate. X‐ray absorption fine spectroscopy shows that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2018-12, Vol.57 (49), p.16114-16119
Hauptverfasser: He, Sisi, Ni, Fenglou, Ji, Yujin, Wang, Lie, Wen, Yunzhou, Bai, Haipeng, Liu, Gejun, Zhang, Ye, Li, Youyong, Zhang, Bo, Peng, Huisheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16119
container_issue 49
container_start_page 16114
container_title Angewandte Chemie International Edition
container_volume 57
creator He, Sisi
Ni, Fenglou
Ji, Yujin
Wang, Lie
Wen, Yunzhou
Bai, Haipeng
Liu, Gejun
Zhang, Ye
Li, Youyong
Zhang, Bo
Peng, Huisheng
description Enhancing the p‐orbital delocalization of a Bi catalyst (termed as POD‐Bi) via layer coupling of the short inter‐layer Bi−Bi bond facilitates the adsorption of intermediate *OCHO of CO2 and thus boosts the CO2 reduction reaction (CO2RR) rate to formate. X‐ray absorption fine spectroscopy shows that the POD‐Bi catalyst has a shortened inter‐layer bond after the catalysts are electrochemically reduced in situ from original BiOCl nanosheets. The catalyst on a glassy carbon electrode exhibits a record current density of 57 mA cm−2 (twice the state‐of‐the‐art catalyst) at −1.16 V vs. RHE with an excellent formate Faradic efficiency (FE) of 95 %. The catalyst has a record half‐cell formate power conversion efficiency of 79 % at a current density of 100 mA cm−2 with 93 % formate FE when applied in a flow‐cell system. The highest rate of the CO2RR production reported (391 mg h−1 cm2) was achieved at a current density of 500 mA cm−2 with formate FE of 91 % at high CO2 pressure. A bismuth catalyst with p‐orbital delocalization exhibits the highest rate of CO2 reduction reaction ever reported (391 mg h−1 cm2 at a current density of 500 mA cm−2 with formate Faradaic efficiency of 91 %), which is twice the state‐of‐the‐art synthesized catalysts. Simulations reveal that the p‐orbital localization facilitates adsorption of intermediate *OCHO of CO2 and hence the formation of formate.
doi_str_mv 10.1002/anie.201810538
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2119930833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2119930833</sourcerecordid><originalsourceid>FETCH-LOGICAL-g3038-c5fb46ddd7263b5e7f996e73e898495eccbb4b6c23230b7cad9e5d02a363548b3</originalsourceid><addsrcrecordid>eNpd0L1OwzAQB3ALgUQprMyWWFhSbF8c22MppVQqdKDMkeM44CqNQz6EysQj8Iw8Ca6KOjDdnfS70-mP0CUlI0oIu9GVsyNGqKSEgzxCA8oZjUAIOA59DBAJyekpOmvbdfBSkmSAnldvFtc_X9_LJnOdLvGdLb3RpfvUnfMV9gV-1K4KYNb4vsaPNqAWdx7fet92eLJkeFpa0zW-sXlvdkvn6KQIyF781SF6uZ-uJg_RYjmbT8aL6BUIyMjwIouTPM8FSyDjVhRKJVaAlUrGiltjsizOEsOAAcmE0bmyPCdMQwI8lhkM0fX-bt349962XbpxrbFlqSvr-zZllCoFRAIEevWPrn3fVOG7oEDEIBTjQam9-nCl3aZ14za62aaUpLuA013A6SHgdPw0nx4m-AVTt3Js</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2137437925</pqid></control><display><type>article</type><title>The p‐Orbital Delocalization of Main‐Group Metals to Boost CO2 Electroreduction</title><source>Wiley Online Library</source><creator>He, Sisi ; Ni, Fenglou ; Ji, Yujin ; Wang, Lie ; Wen, Yunzhou ; Bai, Haipeng ; Liu, Gejun ; Zhang, Ye ; Li, Youyong ; Zhang, Bo ; Peng, Huisheng</creator><creatorcontrib>He, Sisi ; Ni, Fenglou ; Ji, Yujin ; Wang, Lie ; Wen, Yunzhou ; Bai, Haipeng ; Liu, Gejun ; Zhang, Ye ; Li, Youyong ; Zhang, Bo ; Peng, Huisheng</creatorcontrib><description>Enhancing the p‐orbital delocalization of a Bi catalyst (termed as POD‐Bi) via layer coupling of the short inter‐layer Bi−Bi bond facilitates the adsorption of intermediate *OCHO of CO2 and thus boosts the CO2 reduction reaction (CO2RR) rate to formate. X‐ray absorption fine spectroscopy shows that the POD‐Bi catalyst has a shortened inter‐layer bond after the catalysts are electrochemically reduced in situ from original BiOCl nanosheets. The catalyst on a glassy carbon electrode exhibits a record current density of 57 mA cm−2 (twice the state‐of‐the‐art catalyst) at −1.16 V vs. RHE with an excellent formate Faradic efficiency (FE) of 95 %. The catalyst has a record half‐cell formate power conversion efficiency of 79 % at a current density of 100 mA cm−2 with 93 % formate FE when applied in a flow‐cell system. The highest rate of the CO2RR production reported (391 mg h−1 cm2) was achieved at a current density of 500 mA cm−2 with formate FE of 91 % at high CO2 pressure. A bismuth catalyst with p‐orbital delocalization exhibits the highest rate of CO2 reduction reaction ever reported (391 mg h−1 cm2 at a current density of 500 mA cm−2 with formate Faradaic efficiency of 91 %), which is twice the state‐of‐the‐art synthesized catalysts. Simulations reveal that the p‐orbital localization facilitates adsorption of intermediate *OCHO of CO2 and hence the formation of formate.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201810538</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>bismuth ; Carbon dioxide ; Catalysis ; Catalysts ; Chemical reduction ; CO2 electroreduction ; Current density ; delocalization ; Energy conversion efficiency ; formate ; Glassy carbon ; heterogeneous catalysis ; Iron ; Metals ; Spectroscopy ; X ray spectra</subject><ispartof>Angewandte Chemie International Edition, 2018-12, Vol.57 (49), p.16114-16119</ispartof><rights>2018 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2142-2945</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201810538$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201810538$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>He, Sisi</creatorcontrib><creatorcontrib>Ni, Fenglou</creatorcontrib><creatorcontrib>Ji, Yujin</creatorcontrib><creatorcontrib>Wang, Lie</creatorcontrib><creatorcontrib>Wen, Yunzhou</creatorcontrib><creatorcontrib>Bai, Haipeng</creatorcontrib><creatorcontrib>Liu, Gejun</creatorcontrib><creatorcontrib>Zhang, Ye</creatorcontrib><creatorcontrib>Li, Youyong</creatorcontrib><creatorcontrib>Zhang, Bo</creatorcontrib><creatorcontrib>Peng, Huisheng</creatorcontrib><title>The p‐Orbital Delocalization of Main‐Group Metals to Boost CO2 Electroreduction</title><title>Angewandte Chemie International Edition</title><description>Enhancing the p‐orbital delocalization of a Bi catalyst (termed as POD‐Bi) via layer coupling of the short inter‐layer Bi−Bi bond facilitates the adsorption of intermediate *OCHO of CO2 and thus boosts the CO2 reduction reaction (CO2RR) rate to formate. X‐ray absorption fine spectroscopy shows that the POD‐Bi catalyst has a shortened inter‐layer bond after the catalysts are electrochemically reduced in situ from original BiOCl nanosheets. The catalyst on a glassy carbon electrode exhibits a record current density of 57 mA cm−2 (twice the state‐of‐the‐art catalyst) at −1.16 V vs. RHE with an excellent formate Faradic efficiency (FE) of 95 %. The catalyst has a record half‐cell formate power conversion efficiency of 79 % at a current density of 100 mA cm−2 with 93 % formate FE when applied in a flow‐cell system. The highest rate of the CO2RR production reported (391 mg h−1 cm2) was achieved at a current density of 500 mA cm−2 with formate FE of 91 % at high CO2 pressure. A bismuth catalyst with p‐orbital delocalization exhibits the highest rate of CO2 reduction reaction ever reported (391 mg h−1 cm2 at a current density of 500 mA cm−2 with formate Faradaic efficiency of 91 %), which is twice the state‐of‐the‐art synthesized catalysts. Simulations reveal that the p‐orbital localization facilitates adsorption of intermediate *OCHO of CO2 and hence the formation of formate.</description><subject>bismuth</subject><subject>Carbon dioxide</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>CO2 electroreduction</subject><subject>Current density</subject><subject>delocalization</subject><subject>Energy conversion efficiency</subject><subject>formate</subject><subject>Glassy carbon</subject><subject>heterogeneous catalysis</subject><subject>Iron</subject><subject>Metals</subject><subject>Spectroscopy</subject><subject>X ray spectra</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpd0L1OwzAQB3ALgUQprMyWWFhSbF8c22MppVQqdKDMkeM44CqNQz6EysQj8Iw8Ca6KOjDdnfS70-mP0CUlI0oIu9GVsyNGqKSEgzxCA8oZjUAIOA59DBAJyekpOmvbdfBSkmSAnldvFtc_X9_LJnOdLvGdLb3RpfvUnfMV9gV-1K4KYNb4vsaPNqAWdx7fet92eLJkeFpa0zW-sXlvdkvn6KQIyF781SF6uZ-uJg_RYjmbT8aL6BUIyMjwIouTPM8FSyDjVhRKJVaAlUrGiltjsizOEsOAAcmE0bmyPCdMQwI8lhkM0fX-bt349962XbpxrbFlqSvr-zZllCoFRAIEevWPrn3fVOG7oEDEIBTjQam9-nCl3aZ14za62aaUpLuA013A6SHgdPw0nx4m-AVTt3Js</recordid><startdate>20181203</startdate><enddate>20181203</enddate><creator>He, Sisi</creator><creator>Ni, Fenglou</creator><creator>Ji, Yujin</creator><creator>Wang, Lie</creator><creator>Wen, Yunzhou</creator><creator>Bai, Haipeng</creator><creator>Liu, Gejun</creator><creator>Zhang, Ye</creator><creator>Li, Youyong</creator><creator>Zhang, Bo</creator><creator>Peng, Huisheng</creator><general>Wiley Subscription Services, Inc</general><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2142-2945</orcidid></search><sort><creationdate>20181203</creationdate><title>The p‐Orbital Delocalization of Main‐Group Metals to Boost CO2 Electroreduction</title><author>He, Sisi ; Ni, Fenglou ; Ji, Yujin ; Wang, Lie ; Wen, Yunzhou ; Bai, Haipeng ; Liu, Gejun ; Zhang, Ye ; Li, Youyong ; Zhang, Bo ; Peng, Huisheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g3038-c5fb46ddd7263b5e7f996e73e898495eccbb4b6c23230b7cad9e5d02a363548b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>bismuth</topic><topic>Carbon dioxide</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>CO2 electroreduction</topic><topic>Current density</topic><topic>delocalization</topic><topic>Energy conversion efficiency</topic><topic>formate</topic><topic>Glassy carbon</topic><topic>heterogeneous catalysis</topic><topic>Iron</topic><topic>Metals</topic><topic>Spectroscopy</topic><topic>X ray spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Sisi</creatorcontrib><creatorcontrib>Ni, Fenglou</creatorcontrib><creatorcontrib>Ji, Yujin</creatorcontrib><creatorcontrib>Wang, Lie</creatorcontrib><creatorcontrib>Wen, Yunzhou</creatorcontrib><creatorcontrib>Bai, Haipeng</creatorcontrib><creatorcontrib>Liu, Gejun</creatorcontrib><creatorcontrib>Zhang, Ye</creatorcontrib><creatorcontrib>Li, Youyong</creatorcontrib><creatorcontrib>Zhang, Bo</creatorcontrib><creatorcontrib>Peng, Huisheng</creatorcontrib><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Sisi</au><au>Ni, Fenglou</au><au>Ji, Yujin</au><au>Wang, Lie</au><au>Wen, Yunzhou</au><au>Bai, Haipeng</au><au>Liu, Gejun</au><au>Zhang, Ye</au><au>Li, Youyong</au><au>Zhang, Bo</au><au>Peng, Huisheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The p‐Orbital Delocalization of Main‐Group Metals to Boost CO2 Electroreduction</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2018-12-03</date><risdate>2018</risdate><volume>57</volume><issue>49</issue><spage>16114</spage><epage>16119</epage><pages>16114-16119</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Enhancing the p‐orbital delocalization of a Bi catalyst (termed as POD‐Bi) via layer coupling of the short inter‐layer Bi−Bi bond facilitates the adsorption of intermediate *OCHO of CO2 and thus boosts the CO2 reduction reaction (CO2RR) rate to formate. X‐ray absorption fine spectroscopy shows that the POD‐Bi catalyst has a shortened inter‐layer bond after the catalysts are electrochemically reduced in situ from original BiOCl nanosheets. The catalyst on a glassy carbon electrode exhibits a record current density of 57 mA cm−2 (twice the state‐of‐the‐art catalyst) at −1.16 V vs. RHE with an excellent formate Faradic efficiency (FE) of 95 %. The catalyst has a record half‐cell formate power conversion efficiency of 79 % at a current density of 100 mA cm−2 with 93 % formate FE when applied in a flow‐cell system. The highest rate of the CO2RR production reported (391 mg h−1 cm2) was achieved at a current density of 500 mA cm−2 with formate FE of 91 % at high CO2 pressure. A bismuth catalyst with p‐orbital delocalization exhibits the highest rate of CO2 reduction reaction ever reported (391 mg h−1 cm2 at a current density of 500 mA cm−2 with formate Faradaic efficiency of 91 %), which is twice the state‐of‐the‐art synthesized catalysts. Simulations reveal that the p‐orbital localization facilitates adsorption of intermediate *OCHO of CO2 and hence the formation of formate.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.201810538</doi><tpages>6</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-2142-2945</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2018-12, Vol.57 (49), p.16114-16119
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2119930833
source Wiley Online Library
subjects bismuth
Carbon dioxide
Catalysis
Catalysts
Chemical reduction
CO2 electroreduction
Current density
delocalization
Energy conversion efficiency
formate
Glassy carbon
heterogeneous catalysis
Iron
Metals
Spectroscopy
X ray spectra
title The p‐Orbital Delocalization of Main‐Group Metals to Boost CO2 Electroreduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A41%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20p%E2%80%90Orbital%20Delocalization%20of%20Main%E2%80%90Group%20Metals%20to%20Boost%20CO2%20Electroreduction&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=He,%20Sisi&rft.date=2018-12-03&rft.volume=57&rft.issue=49&rft.spage=16114&rft.epage=16119&rft.pages=16114-16119&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.201810538&rft_dat=%3Cproquest_wiley%3E2119930833%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2137437925&rft_id=info:pmid/&rfr_iscdi=true