The p‐Orbital Delocalization of Main‐Group Metals to Boost CO2 Electroreduction

Enhancing the p‐orbital delocalization of a Bi catalyst (termed as POD‐Bi) via layer coupling of the short inter‐layer Bi−Bi bond facilitates the adsorption of intermediate *OCHO of CO2 and thus boosts the CO2 reduction reaction (CO2RR) rate to formate. X‐ray absorption fine spectroscopy shows that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2018-12, Vol.57 (49), p.16114-16119
Hauptverfasser: He, Sisi, Ni, Fenglou, Ji, Yujin, Wang, Lie, Wen, Yunzhou, Bai, Haipeng, Liu, Gejun, Zhang, Ye, Li, Youyong, Zhang, Bo, Peng, Huisheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Enhancing the p‐orbital delocalization of a Bi catalyst (termed as POD‐Bi) via layer coupling of the short inter‐layer Bi−Bi bond facilitates the adsorption of intermediate *OCHO of CO2 and thus boosts the CO2 reduction reaction (CO2RR) rate to formate. X‐ray absorption fine spectroscopy shows that the POD‐Bi catalyst has a shortened inter‐layer bond after the catalysts are electrochemically reduced in situ from original BiOCl nanosheets. The catalyst on a glassy carbon electrode exhibits a record current density of 57 mA cm−2 (twice the state‐of‐the‐art catalyst) at −1.16 V vs. RHE with an excellent formate Faradic efficiency (FE) of 95 %. The catalyst has a record half‐cell formate power conversion efficiency of 79 % at a current density of 100 mA cm−2 with 93 % formate FE when applied in a flow‐cell system. The highest rate of the CO2RR production reported (391 mg h−1 cm2) was achieved at a current density of 500 mA cm−2 with formate FE of 91 % at high CO2 pressure. A bismuth catalyst with p‐orbital delocalization exhibits the highest rate of CO2 reduction reaction ever reported (391 mg h−1 cm2 at a current density of 500 mA cm−2 with formate Faradaic efficiency of 91 %), which is twice the state‐of‐the‐art synthesized catalysts. Simulations reveal that the p‐orbital localization facilitates adsorption of intermediate *OCHO of CO2 and hence the formation of formate.
ISSN:1433-7851
1521-3773
DOI:10.1002/anie.201810538