Global warming potential and total material requirement in metal production: Identification of changes in environmental impact through metal substitution
In view of the increasing demand for metal use, it is of significant importance to evaluate the environmental impact of metal production. The global warming potential (GWP) in the process of metal production has often been focused upon as a major indicator for evaluating the burden on the environmen...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2019-02, Vol.651 (Pt 2), p.1764-1775 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In view of the increasing demand for metal use, it is of significant importance to evaluate the environmental impact of metal production. The global warming potential (GWP) in the process of metal production has often been focused upon as a major indicator for evaluating the burden on the environment. Moreover, the environmental impact and mineral exploitation arising from metal ore mining activities, which generate unavoidable mine wastes and have an impact on the ecological biodiversity, cannot be ignored. The major factors for determining the intensity of resource exploitation being the ore grades and strip ratio, the existing indicators for land use employed in the life cycle assessment (LCA) may not fully cover the criteria of the impact of metal mining on the environmental system. Therefore, this study employs the method of total material requirement (TMR) assessment, involving not only the direct and indirect material inputs but also the hidden flows, which are particularly associated with mine wastes. Firstly, the methodology of computing the TMR in the process of metal production is developed. Next, the relation between the GWP and TMR for 58 metals is assessed and finally, the environmental impact through metal substitutes is evaluated from the perspectives of the GWP and TMR. This analysis could identify some of the aspects overlooked in the previous environmental criteria that were concentrating on greenhouse gas emissions and global warming. The developed algorithm may be useful in identifying appropriate metal substitutes, considering the environmental impact.
[Display omitted]
•Interaction of environmental consequences of mining activities is identified.•Total material requirement is employed as an environmental indicator.•Relations between GWP and TMR for 59 metals are assessed.•40% of metal substitute options cause an additional environmental impact. |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2018.10.085 |