Strategies to mitigate the nitrous oxide emissions from nitrogen fertilizer applied with organic fertilizers in sugarcane

Vinasse is a major byproduct of the sugarcane biofuel industry, recycled in the fields. However, there is evidence that the application of vinasse with mineral nitrogen (N) fertilizers in sugarcane enhances the emission of greenhouse gases (GHGs). Therefore, strategies are needed to decrease the env...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2019-02, Vol.650 (Pt 1), p.1476-1486
Hauptverfasser: Lourenço, Késia Silva, Rossetto, Raffaella, Vitti, André Cesar, Montezano, Zaqueu Fernando, Soares, Johnny Rodrigues, Sousa, Rafael de Melo, do Carmo, Janaina Braga, Kuramae, Eiko Eurya, Cantarella, Heitor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Vinasse is a major byproduct of the sugarcane biofuel industry, recycled in the fields. However, there is evidence that the application of vinasse with mineral nitrogen (N) fertilizers in sugarcane enhances the emission of greenhouse gases (GHGs). Therefore, strategies are needed to decrease the environmental impacts caused by both inputs. We carried out three sugarcane field experiments by applying N fertilizer (ammonium nitrate) with types of vinasses (concentrated-CV and standard-V) in different combinations (vinasses with N fertilizer and vinasses one month before or after mineral N fertilization). The gases nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) were measured in one experiment fertilized in the beginning (fall/winter = dry season) and two experiments fertilized in the end (spring = rainy season) of the harvest season. Sugarcane fields were sinks rather than sources of CH4, while total carbon emitted as CO2 was similar between seasons and treatments. The effect of mineral fertilization and vinasses (CV and V) on N2O emissions was highly dependent on soil moisture (rain events). The N2O-N fertilizer emission factor (EF) varied from 0.07% to 0.51%, whereas the average EF of V and CV were 0.66% and 0.34%, respectively. On average across the three experiments, the combination of vinasse (CV or V) with N fertilizer increased the N2O emissions 2.9-fold compared to that of N fertilizer alone. For CV + N, the EF was 0.94% of the applied N and 0.23% of the ammonium nitrate-N, and for V + N (EF = 0.47%), increased emissions were observed in two out of three experiments. The strategy of anticipating or postponing vinasse application by one month with respect to mineral N reduced the N2O emissions by 51% for CV, but not for V. Therefore, to avoid boosting N2O emissions, we suggest applying vinasses (CV and V) before or after mineral N fertilization. [Display omitted] •N2O emission in well-drained soil with sugarcane is low, 0.2% of N fertilizer.•Vinasse applied with N fertilizer increases N2O emissions.•Anticipated or postponed vinasse in relation to N fertilizer reduces N2O emissions.•Sugarcane fields were sinks rather than sources of CH4.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2018.09.037