Spectroscopic study of breath ethylene via the mouth and nose
The development of new techniques for breath analysis searching for objective biomarkers of oxidative stress showed promise in non-invasive disclosing health information of the well-being of a person. Although numerous biomarkers have been identified so far using breath analysis, very little is know...
Gespeichert in:
Veröffentlicht in: | Lasers in medical science 2019-06, Vol.34 (4), p.773-778 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The development of new techniques for breath analysis searching for objective biomarkers of oxidative stress showed promise in non-invasive disclosing health information of the well-being of a person. Although numerous biomarkers have been identified so far using breath analysis, very little is known about their origin if they are metabolic or providing from mouth contamination. For the introduction of breath tests into clinical practice, standardization of sample collection needs to be taken into account. Breath analysis has been performed using laser photoacoustic spectroscopy to evaluate exhaled breath by mouth and nose before and after brushing with toothpaste/baking soda in order to identify the important endogenous biomarkers without contaminant sources. As a known biomarker of oxidative stress in the human body, it is important to accurately assess ethylene from exhaled air. Differences in the concentrations of exhaled ethylene are observed after using toothpaste and baking soda. The levels of ethylene are lower for nose breathing compared with mouth breathing. However, the differences are not significant proving that ethylene is generally endogenous but may still exist some contamination, depending of the oral hygiene of each person. These results may lead to a procedure, whereby subjects should be instructed to use toothpaste before each breath test sampling, to avoid the possibility of contamination of endogenous biomarkers. |
---|---|
ISSN: | 0268-8921 1435-604X |
DOI: | 10.1007/s10103-018-2661-z |