Characterization of Arabidopsis genes involved in biosynthesis of polyamines in abiotic stress responses and developmental stages

ABSTRACT To characterize the genes for enzymes involved in the biosynthesis of polyamines (PAs), their expression profiles were investigated and the levels of PAs in Arabidopsis thaliana quantified. In the Arabidopsis genome, eight genes involved in PAs biosynthesis were identified and the expressio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant, cell and environment cell and environment, 2003-11, Vol.26 (11), p.1917-1926
Hauptverfasser: URANO, K., YOSHIBA, Y., NANJO, T., IGARASHI, Y., SEKI, M., SEKIGUCHI, F., YAMAGUCHI‐SHINOZAKI, K., SHINOZAKI, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT To characterize the genes for enzymes involved in the biosynthesis of polyamines (PAs), their expression profiles were investigated and the levels of PAs in Arabidopsis thaliana quantified. In the Arabidopsis genome, eight genes involved in PAs biosynthesis were identified and the expression profiles of these genes were analysed, not only under abiotic stress to determine whether they were stress‐inducible, constitutive, or stress‐repressible, but also in various organs to show their tissue specificity. AtADC2 and AtSPMS mRNAs, encoding arginine decarboxylase and spermine synthase, clearly increased in response to NaCl and dehydration and abscisic acid treatments. Stress‐inducible accumulation of AtADC2 mRNA correlated with putrescine (Put) accumulation under NaCl and dehydration treatments. In a cold condition, AtSAMDC2 mRNA increased significantly. AtADC2 and AtSAMDC2 mRNA were expressed in sexual organs such as flowers, buds and immature siliques. PAs also accumulated in sexual organs. These results suggest that the transcripts of eight genes involved in PA biosynthesis show different profiles of expression not only in response to environmental stress but also during plant development.
ISSN:0140-7791
1365-3040
DOI:10.1046/j.1365-3040.2003.01108.x