Biodegradation of a variety of bisphenols under aerobic and anaerobic conditions
There is a group of compounds structurally similar to bisphenol-A (BPA), namely bisphenols (BPs), and some of them are considered to be able to partially replace BPA. In order to assess their biodegradability in the aquatic environment, a variety of BPs; BPA, bis(4-hydroxyphenyl)methane (BPF), bis(4...
Gespeichert in:
Veröffentlicht in: | Water science and technology 2006-01, Vol.53 (6), p.153-159 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | There is a group of compounds structurally similar to bisphenol-A (BPA), namely bisphenols (BPs), and some of them are considered to be able to partially replace BPA. In order to assess their biodegradability in the aquatic environment, a variety of BPs; BPA, bis(4-hydroxyphenyl)methane (BPF), bis(4-hydroxyphenyl)ethane (BPE), 2,2-bis(4-hydroxy-phenyl)butane (BPB), 2,2-bis(4- hydroxy-3-methylphenyl)propane (BPP), bis(4-hydroxyphenyl)sulfone (BPS), thiodiphenol (TDP) and 4,4'-dihydroxybenzophenone (HBP); were subjected to biodegradation tests under both aerobic and anaerobic conditions. For the aerobic degradation test, a kind of river-die-away method using several river water samples was used, while pond sediments were used for the anaerobic degradation tests in sealed anoxic bottles. As a whole, the examined BPs could be ranked by their biodegradability under aerobic conditions; BPF, HBP > > BPA > BPP > BPE > BPB > TDP > > BPS. On the other hand, the tendency for the anaerobic biodegradability was; BPF > HBP > BPS, BPA, TDP > BPE > BPB. From the viewpoint of biodegradability, BPF seems to be more environmentally-friendly than BPA and, therefore, may be a candidate to replace BPA for reducing the environmental risks. |
---|---|
ISSN: | 0273-1223 1996-9732 |
DOI: | 10.2166/wst.2006.189 |