Green synthesis of labeled CeO2 nanoparticles with 99mTc and its biodistribution evaluation in mice

The in vivo targeted diagnostic applications of biosynthetic Cerium oxide nanoparticles (CeO2-NPs), prepared by applying chitosan as a stabilizer, was explored by evaluating the cytotoxicity through MTT assay on WEHI 164 cell line, the Hemolytic activity of CeO2-NPs and biodistribution in rats. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Life sciences (1973) 2018-11, Vol.212, p.233-240
Hauptverfasser: Hasanzadeh, Leila, Kazemi Oskuee, Reza, Sadri, Kayvan, Nourmohammadi, Esmail, Mohajeri, Mohammad, Mardani, Zahra, Hashemzadeh, Alireza, Darroudi, Majid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The in vivo targeted diagnostic applications of biosynthetic Cerium oxide nanoparticles (CeO2-NPs), prepared by applying chitosan as a stabilizer, was explored by evaluating the cytotoxicity through MTT assay on WEHI 164 cell line, the Hemolytic activity of CeO2-NPs and biodistribution in rats. The CeO2-NPs were characterized through the use of TGA/DTG, PXRD, FESEM, FTIR, and UV–Vis spectroscopy. The biodistribution of CeO2-NPs were determined by directly labeled nanoparticles with Technetium-99 m (99mTc) radioisotope (99mTc-CeO2-NPs). The labeling efficiency and stability of 99mTc-CeO2-NPs were also measured with Instant Thin Layer Chromatography (ITLC) method. The saturation study was investigated by 1 mCi of 99mTc-CeO2-NPs using different concentrations of WEHI 164 cells after 4 h of incubation. In vivo biodistribution study was performed by intravenous injection of 600 μCi/200 μL 99mTc-CeO2-NPs through rat's tail. CeO2-NPs seemed to have a low cytotoxic effect on WEHI 164 cell line and did not result in hemolysis. The biodistribution of CeO2-NPs has shown that a huge amount of 99mTc-CeO2-NPs was amassed in the living human organs, including liver, lung, spleen, stomach, and thyroid which shows the in vivo stability of the labeled conjugate. Herein, we have developed a facile, economical, and greener synthetic procedure applying Chitosan template. This green approach is comparable to conventional methods that utilize hazardous materials which are would be a suitable alternative to circumvent synthetic issues related to these materials. The bio-applications of nano-sized CeO2-NPs were explored to find new horizon to use nanotechnology as the diagnostic tool. [Display omitted]
ISSN:0024-3205
1879-0631
DOI:10.1016/j.lfs.2018.10.010