Mass spectral studies of N-oxides of chemical weapons convention-related aminoethanols by gas chromatography/mass spectrometry after silylation
N-Alkylaminoethanols, N,N′-dialkylaminoethanols, and triethanolamine are the hydrolyzed products or precursors of V-agents/nitrogen mustards. These compounds are prone to undergo oxidation in environmental matrices. Detection of the oxidized products provides a clue for the presence of parent amine...
Gespeichert in:
Veröffentlicht in: | European journal of mass spectrometry (Chichester, England) England), 2018-12, Vol.24 (6), p.442-453 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | N-Alkylaminoethanols, N,N′-dialkylaminoethanols, and triethanolamine are the hydrolyzed products or precursors of V-agents/nitrogen mustards. These compounds are prone to undergo oxidation in environmental matrices. Detection of the oxidized products provides a clue for the presence of parent amine compounds and it is an important task in the verification process of chemical weapons convention. Gas chromatography/mass spectrometry is the technique of choice for the detection of most of the chemical warfare agents; however, it is ideal to develop gas chromatography/mass spectrometry techniques for all the possible degradation products of chemical warfare agents as well. In general, the N-oxides of amines are expected to be thermally unstable; hence, the gas chromatography/mass spectrometry analysis of the N-oxides of triethanolamine, N-alkyldiethanolamines and N,N′-dialkylaminoethanols is not explored. In this study, the N-oxides of chemical weapons convention-related aminoethanols (13 compounds) were successfully silylated and then analyzed by gas chromatography/mass spectrometry under electron ionization and chemical ionization techniques. The electron ionization mass spectra showed abundant molecular ions and structure indicative fragment ions including [M-(O+CH2CH2OH)]+. The alkyl groups attached to nitrogen resulted in structure-specific fragment ions that enable differentiation of isomeric compounds. The methane/chemical ionization spectra showed considerably abundant [M+H]+ (>10%) and the expected adduct ions. The retention indices of all the compounds were calculated using Van den Dool's formula. The gas chromatography/mass spectrometry data together with retention index values could be used for unambiguous identification of the N-oxides of aminoethanols during off-site analysis or proficiency tests. |
---|---|
ISSN: | 1469-0667 1751-6838 |
DOI: | 10.1177/1469066718805233 |