Raw regulates glial population of the eye imaginal disc
Summary Glia are critical for proper development, support, and function of the nervous system. The Drosophila eye has proven an excellent model for gaining significant insight into the molecular mechanisms regulating glial development and function. Recent studies have demonstrated that Raw is requir...
Gespeichert in:
Veröffentlicht in: | Genesis (New York, N.Y. : 2000) N.Y. : 2000), 2018-10, Vol.56 (10), p.e23254-n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Summary
Glia are critical for proper development, support, and function of the nervous system. The Drosophila eye has proven an excellent model for gaining significant insight into the molecular mechanisms regulating glial development and function. Recent studies have demonstrated that Raw is required in glia of the central and peripheral nervous systems; however, the function of Raw in glia of the developing eye has not been explored. These studies demonstrate that raw knockdown results in a reduction in the number of glia in the third instar eye imaginal disc and reduced glial spreading across the field of differentiating photoreceptor neurons. Expression of a raw enhancer trap reveals that raw is expressed in eye disc glia. Exploration of the mechanism by which raw knockdown results in glial reduction reveals that Raw is required for glial proliferation and migration into the eye disc. In addition, Raw negatively regulates Jun N‐terminal kinase (JNK) signaling in glia of the developing eye and increased JNK signaling results in a reduction in the number of glia populating the eye disc, similar to that observed upon raw knockdown. Thus, Raw functions as a critical regulator of glial population of the eye imaginal disc by regulating glial proliferation and migration and inhibiting JNK signaling. |
---|---|
ISSN: | 1526-954X 1526-968X |
DOI: | 10.1002/dvg.23254 |