Biochar's impact on dissolved organic matter (DOM) export from a cropland soil during natural rainfalls
Although biochar amendment to soil has achieved widely recognized benefits such as plant growth improvement and carbon sequestration, what impact it would have on soil carbon cycling, especially on the behavior of the active dissolved organic matter (DOM), is still unclear. This study evaluated bioc...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2019-02, Vol.650 (Pt 2), p.1988-1995 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Although biochar amendment to soil has achieved widely recognized benefits such as plant growth improvement and carbon sequestration, what impact it would have on soil carbon cycling, especially on the behavior of the active dissolved organic matter (DOM), is still unclear. This study evaluated biochar's effects on soil properties and the characteristics of DOM exporting from a cropland Entisol. The soil is the major arable land resource in the upper reaches of the Yangtze River, China and noted for its low soil organic matter and prevalence of preferential flow. Surface runoff, soil pore water and leachate were collected from the field upon a series of natural rainfall. Concentration of dissolved organic carbon (DOC) of soil pore water was found to respond strongly toward the rainfalls. Biochar application led to relatively higher DOC levels within the soil (p > 0.05). Despite apparent increase of DOC and EEM intensities for the freshly-amended soil, PARAFAC analyses indicated no changes in DOM's fluorophore compositions after two years of ageing. The identified DOM components (C1 and C2) showed similar dynamics with the DOCs in responding to the rainfalls. On the other hand, total flux of DOM leaching from biochar-amended plots during three monitored storms was on average 59% higher than the control (p > 0.05), whereas DOM export via surface runoff was slightly diminished. Noticeably, biochar amendment had caused a significant increase of >1000 μm macropores and thus the enhanced infiltration of soil water. Such changes led to increased flow discharge, which in turn resulted in elevated leaching of organic carbon during rainfalls. The results therefore implies that changes of soil structure and hydraulic properties that will take place after biochar application merits attention as they may play a continuous role in influencing the transport of DOM and possibly other solutes via runoff processes.
[Display omitted]
•Enhanced soil hydraulic conductivity observed due to increase of macropores•Apparent DOM changes due to fresh biochar addition strongly weakened with ageing.•Control and biochar plots contained DOM of same spectroscopic compositions.•DOC and contents of PARAFAC-identified components of soil pore water responded similarly toward rainfalls.•An increasing trend for total DOM flux exporting from biochar-amended plots |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2018.09.356 |