Simplified end-to-end continuous manufacturing by feeding API suspensions in twin-screw wet granulation

[Display omitted] This study focussed on investigating the coupling of continuous manufacturing of drug substance and continuous manufacture of drug product. An important step in such an integrated end-to-end continuous manufacturing was envisioned by dosing the API as suspension into a twin-screw w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of pharmaceutics and biopharmaceutics 2018-12, Vol.133, p.224-231
Hauptverfasser: Schmidt, Adrian, de Waard, Hans, Moll, Klaus-Peter, Kleinebudde, Peter, Krumme, Markus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] This study focussed on investigating the coupling of continuous manufacturing of drug substance and continuous manufacture of drug product. An important step in such an integrated end-to-end continuous manufacturing was envisioned by dosing the API as suspension into a twin-screw wet granulation process. To achieve this goal, a model drug substance (ibuprofen) was fed as a concentrated aqueous suspension (50% w/w) into a twin-screw granulator and compared against traditional solid feeding of the model drug substance to meet a target ibuprofen load of 60% w/w in the formulation. Granulation and compaction behaviour were evaluated to determine the impact of feeding API as suspension in twin-screw wet granulation on the critical quality attributes of the drug product. It was demonstrated that the ibuprofen suspension feed is comparable with the ibuprofen dry blend feed in twin-screw wet granulation. Next to enabling end-to-end continuous manufacturing, API suspension feed in twin-screw wet granulation could afford a number of additional advantages including manufacturing efficiency by removing the drying step for API, or overcoming processing issues linked to the bulk properties of the API powder (e.g. flowability).
ISSN:0939-6411
1873-3441
DOI:10.1016/j.ejpb.2018.09.026