Verification of Doppler coherence imaging for 2D ion velocity measurements on DIII-D

Coherence Imaging Spectroscopy (CIS) has emerged as a powerful tool for investigating complex ion phenomena in the boundary of magnetically confined plasma devices. The combination of Fourier-transform interferometry and high-resolution fast-framing cameras has made it possible to make sensitive vel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2018-09, Vol.89 (9), p.093502-093502
Hauptverfasser: Samuell, C. M., Allen, S. L., Meyer, W. H., Isler, R. C., Briesemeister, A., Wilcox, R. S., Lasnier, C. J., Mclean, A. G., Howard, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Coherence Imaging Spectroscopy (CIS) has emerged as a powerful tool for investigating complex ion phenomena in the boundary of magnetically confined plasma devices. The combination of Fourier-transform interferometry and high-resolution fast-framing cameras has made it possible to make sensitive velocity measurements that are also spatially resolved. However, this sensitivity makes the diagnostic vulnerable to environmental effects including thermal drifts, vibration, and magnetic fields that can influence the velocity measurement. Additionally, the ability to provide an absolute calibration for these geometries can be impacted by differences in the light-collection geometry between the plasma and reference light source, spectral impurities, and the presence of thin-films on in-vessel optics. This paper discusses the mitigation of these effects and demonstration that environmental effects result in less than 0.5 km/s error on the DIII-D CIS systems. A diagnostic comparison is used to demonstrate agreement between CIS and traditional spectroscopy once tomographic artifacts are accounted for.
ISSN:0034-6748
1089-7623
DOI:10.1063/1.5039367