The suppression of CMR in Nd(Mn1−xCox)AsO0.95F0.05

The colossal magnetoresistance (CMR) observed in the oxypnictide NdMnAsO1−xFx has been further investigated. The magnetotransport is dominated by magnetopolarons. Magnetoresistance measurements of the series Nd(Mn1−xCox)AsO0.95F0.05 show that doping with cobalt on the manganese site pins the magneto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dalton transactions : an international journal of inorganic chemistry 2018, Vol.47 (41), p.14726-14733
Hauptverfasser: Wildman, E J, McCombie, K S, Stenning, G B G, Mclaughlin, A C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The colossal magnetoresistance (CMR) observed in the oxypnictide NdMnAsO1−xFx has been further investigated. The magnetotransport is dominated by magnetopolarons. Magnetoresistance measurements of the series Nd(Mn1−xCox)AsO0.95F0.05 show that doping with cobalt on the manganese site pins the magnetopolarons and suppresses the CMR, which is completely destroyed by x = 0.047. The chemical doping results in non-stoichiometric samples, with both As and O vacancies. The relationship between the non-stoichiometry, magnetic order, electron doping and CMR is explored. The Nd antiferromagnetic transition and simultaneous reorientation of the Mn spins into the basal plane at 23 K (TSR) is not effected by Co doping. However, there is a significant decrease in TN(Mn) as the antiferromagnetic transition is suppressed from 360 K to 300 K as x increases from 0–0.047. The manganese moment at 10 K is also reduced from 3.86(2)μB to 3.21(2)μB over the same doping range. This reduction in the in-plane Mn moment decreases the electron–electron correlations below TSR and acts to further diminish the magnetoresistance.
ISSN:1477-9226
1477-9234
DOI:10.1039/c8dt03071e