Olefin Metathesis-Based Fluorescent Probes for the Selective Detection of Ethylene in Live Cells

Ethylene is an important plant hormone that is involved in a variety of developmental processes including agriculturally important ripening of certain fruits. Owing to its significant roles, a number of approaches have previously been developed to detect ethylene via molecular interactions. However,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2018-10, Vol.140 (41), p.13151-13155
Hauptverfasser: Toussaint, Sacha N. W, Calkins, Ryan T, Lee, Sumin, Michel, Brian W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ethylene is an important plant hormone that is involved in a variety of developmental processes including agriculturally important ripening of certain fruits. Owing to its significant roles, a number of approaches have previously been developed to detect ethylene via molecular interactions. However, there are no current approaches for detection that are selective via a discrete homogeneous molecular interaction. Here we report two profluorescent chemodosimeters for the selective detection of the plant hormone ethylene. The approach consists of a BODIPY fluorophore with a pendant ruthenium recognition element based on a Hoveyda–Grubbs second generation catalysts. A marked increase in fluorescence is observed upon exposure to ethylene and selectivity is observed for ethylene over other alkenes, providing a unique approach toward ethylene detection. Imaging in live cells demonstrated that ethylene could be detected from multiple relevant sources.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.8b05191