Study of pyridoxamine against glycation and reactive oxygen species production in human serum albumin as model protein: An in vitro & ex vivo approach
Hyperglycaemia is considered to be a driving factor for advanced glycated end products (AGEs). Inhibiting the process of glycation play an important role in reducing the diabetes related complications. We have explored the glucose mediated glycation and antiglycation activity of pyridoxamine using h...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2018-12, Vol.120 (Pt B), p.1734-1743 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hyperglycaemia is considered to be a driving factor for advanced glycated end products (AGEs). Inhibiting the process of glycation play an important role in reducing the diabetes related complications. We have explored the glucose mediated glycation and antiglycation activity of pyridoxamine using human serum albumin (HSA). Protein was incubated with glucose for 28 days at physiological temperature to achieve glycation. Antiglycation activity was assessed by the estimation of carbonyl content, free lysine and AGE specific fluorescence. Molecular docking was used to study the interaction of pyridoxamine with HSA and to get a detailed understanding of binding sites and binding energy. Glycation was reduced by pyridoxamine to commendable levels which was evident by the quantification of free lysine and carbonyl content. Pyridoxamine treatment also prevented the loss in secondary structure induced by glycation. It has also emerged as the quencher of reactive oxygen species which lead to the protection of DNA from oxidative damage. Pyridoxamine was found to be located at subdomain IIA of HSA with binding energy of −5.6 kcal/mol. These results are high points in the antiglycation activity of pyridoxamine. Its antioxidant nature and antiglycation activity are proof of its potential in preventing disease progression in diabetes. |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2018.09.176 |