Role of MEL-18 Amplification in Anti-HER2 Therapy of Breast Cancer
Abstract Background Resistance to HER2-targeted therapy with trastuzumab still remains a major challenge in HER2-amplified tumors. Here we investigated the potential role of MEL-18, a polycomb group gene, as a novel prognostic marker for trastuzumab resistance in HER2-positive (HER2+) breast cancer....
Gespeichert in:
Veröffentlicht in: | JNCI : Journal of the National Cancer Institute 2019-06, Vol.111 (6), p.609-619 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Background
Resistance to HER2-targeted therapy with trastuzumab still remains a major challenge in HER2-amplified tumors. Here we investigated the potential role of MEL-18, a polycomb group gene, as a novel prognostic marker for trastuzumab resistance in HER2-positive (HER2+) breast cancer.
Methods
The genetic alteration of MEL-18 and its clinical relevance were examined in multiple breast cancer cohorts including METABRIC (n = 1,980), TCGA (n = 825), and our clinical specimens (n = 213, trastuzumab-treated HER2+ cases). MEL-18 amplification was validated by fluorescence in situ hybridization (FISH) analysis. The MEL-18 effect on trastuzumab response was confirmed by in vitro cell viability assays and an in vivo xenograft experiment (n = 7 per group). Gene expression microarray and receptor tyrosine kinase array were performed to identify the trastuzumab resistance mechanism by MEL-18 loss. All statistical tests were two-sided.
Results
MEL-18 was exclusively amplified in approximately 30–50% of HER2+ breast tumors and was associated with a favorable clinical outcome (disease-free survival: P = .02 in HER2+ cases, METABRIC; P = .04 in patients receiving trastuzumab). In MEL-18–amplified HER2+ breast cancer, MEL-18 depletion induced trastuzumab resistance by increasing ADAM sheddase-mediated ErbB ligand production and receptor heterodimerization. MEL-18 epigenetically silenced ADAM10/17 expression in cooperation with polycomb-repressive complex (PRC) 1 and PRC2. Combination treatment with an ADAM10/17 inhibitor and trastuzumab could overcome MEL-18 loss-mediated trastuzumab resistance in vivo (BT474/shMEL-18 xenograft: trastuzumab, mean [SD] tumor volume = 406.1 [50.1] mm3, vs trastuzumab + GW280264 30 mg/kg, mean [SD] tumor volume = 68.4 [15.6] mm3, P < .001). Consistently, trastuzumab-treated patients harboring concomitant MEL-18 amplification and low ADAM17 expression showed prolonged relapse-free survival (P = .02 in our cohort, n = 213).
Conclusion
MEL-18 serves to prevent ligand-dependent ErbB heterodimerization and trastuzumab resistance, suggesting MEL-18 amplification as a novel biomarker for HER2+ breast cancer. |
---|---|
ISSN: | 0027-8874 1460-2105 |
DOI: | 10.1093/jnci/djy151 |