A Genetically Encoded Protein Polymer for Uranyl Binding and Extraction Based on the SpyTag–SpyCatcher Chemistry

A defining goal of synthetic biology is to develop biomaterials with superior performance and versatility. Here we introduce a purely genetically encoded and self-assembling biopolymer based on the SpyTag–SpyCatcher chemistry. We show the application of this polymer for highly efficient uranyl bindi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS synthetic biology 2018-10, Vol.7 (10), p.2331-2339
Hauptverfasser: Yang, Xiaoyu, Wei, Jingyi, Wang, Yuqing, Yang, Changru, Zhao, Shijun, Li, Cheng, Dong, Yiming, Bai, Ke, Li, Yuexuan, Teng, Huaiyuan, Wang, Dingyu, Lyu, Nayun, Li, Jiamian, Chang, Xuyao, Ning, Xin, Ouyang, Qi, Zhang, Yihao, Qian, Long
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A defining goal of synthetic biology is to develop biomaterials with superior performance and versatility. Here we introduce a purely genetically encoded and self-assembling biopolymer based on the SpyTag–SpyCatcher chemistry. We show the application of this polymer for highly efficient uranyl binding and extraction from aqueous solutions, by embedding two functional modulesthe superuranyl binding protein and the monomeric streptavidinto the polymer via genetic fusion. We further provide a modeling strategy for predicting the polymer’s physical properties, and experimentally demonstrate the autosecretion of component monomers from bacterial cells. The potential of multifunctionalization, in conjunction with the genetic design and production pipeline, underscores the advantage of the SpyTag–SpyCatcher biopolymers for applications beyond trace metal enrichment and environmental remediation.
ISSN:2161-5063
2161-5063
DOI:10.1021/acssynbio.8b00223