Block Copolymer/Plasmid DNA Micelles Postmodified with Functional Peptides via Thiol–Maleimide Conjugation for Efficient Gene Delivery into Plants

Introducing exogenous genes into plant cells is essential for a wide range of applications in agriculture and plant biotechnology fields. Cationic peptide carriers with cell-penetrating and DNA-binding domains successfully deliver exogenous genes into plants. However, their cell-penetrating activity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomacromolecules 2019-02, Vol.20 (2), p.653-661
Hauptverfasser: Miyamoto, Takaaki, Tsuchiya, Kousuke, Numata, Keiji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Introducing exogenous genes into plant cells is essential for a wide range of applications in agriculture and plant biotechnology fields. Cationic peptide carriers with cell-penetrating and DNA-binding domains successfully deliver exogenous genes into plants. However, their cell-penetrating activity may be attenuated by undesired electrostatic interactions between the cell-penetrating peptide (CPP) domain and DNA cargo, resulting in limited gene delivery efficiency. Here, we developed the block copolymer maleimide-conjugated tetra­(ethylene glycol) and poly­(l-lysine) (MAL-TEG-PLL). Through electrostatic interactions with plasmid DNA (pDNA), MAL-TEG-PLL formed a micelle that presented maleimide groups on its surface. The micelle enabled postmodification with cysteine-containing functional peptides, including a CPP (BP100-Cys) and nuclear localization signal (Cys-NLS) via thiol–maleimide conjugation, thereby avoiding undesired interactions. According to a comparison of gene delivery efficiencies among the peptide-postmodified micelles, the amount of BP100-Cys on the micelle surface was key for efficient gene delivery. The BP100-postmodified micelle showed more efficient delivery compared with that of the BP100-premodified micelle. Thus, postmodification of polymeric micelles with functional peptides opens the door to designing highly efficient plant gene delivery systems.
ISSN:1525-7797
1526-4602
DOI:10.1021/acs.biomac.8b01304