Modeling the camel-to-bell shape transition of the differential capacitance using mean-field theory and Monte Carlo simulations

. Mean-field electrostatics is used to calculate the differential capacitance of an electric double layer formed at a planar electrode in a symmetric 1:1 electrolyte. Assuming the electrolyte is also ion-size symmetric, we derive analytic expressions for the differential capacitance valid up to four...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. E, Soft matter and biological physics Soft matter and biological physics, 2018-09, Vol.41 (9), p.113-9, Article 113
Hauptverfasser: Bossa, Guilherme V., Caetano, Daniel L. Z., de Carvalho, Sidney J., Bohinc, Klemen, May, Sylvio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:. Mean-field electrostatics is used to calculate the differential capacitance of an electric double layer formed at a planar electrode in a symmetric 1:1 electrolyte. Assuming the electrolyte is also ion-size symmetric, we derive analytic expressions for the differential capacitance valid up to fourth order in the surface charge density or surface potential. Our mean-field model accounts exclusively for electrostatic interactions but includes an arbitrary non-ideality in the mixing entropy of the mobile ions. The ensuing criterion for the camel-to-bell shape transition of the differential capacitance is analyzed using commonly used mixing models (one based on a lattice gas and the other based on the Carnahan-Starling equation of state) and compared with Monte Carlo simulations. We observe a reasonable agreement between all our mean-field models and the simulation data for the camel-to-bell shape transition. The absolute value of the differential capacitance for an uncharged (or weakly charged) electrode is, however, not reproduced by our mean-field approaches, not even upon introducing a Stern layer with a thickness equal of the ion radius. We show that, if a Stern layer is introduced, its thickness dependence on the ion size is non-monotonic or, depending on the salt concentration, even inversely proportional. Graphical abstract
ISSN:1292-8941
1292-895X
DOI:10.1140/epje/i2018-11723-7