A Hollow Porous CdS Photocatalyst

Efficient light harvesting and charge separation are of great importance in solar‐energy conversion on photocatalysts. Herein, the synthesis of a novel hollow porous CdS photocatalyst with effectively restrained electron–hole recombination is reported. By using microporous zeolites as a host and a h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2018-11, Vol.30 (45), p.e1804368-n/a
Hauptverfasser: Sun, Qiming, Wang, Ning, Yu, Jihong, Yu, Jimmy C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 45
container_start_page e1804368
container_title Advanced materials (Weinheim)
container_volume 30
creator Sun, Qiming
Wang, Ning
Yu, Jihong
Yu, Jimmy C.
description Efficient light harvesting and charge separation are of great importance in solar‐energy conversion on photocatalysts. Herein, the synthesis of a novel hollow porous CdS photocatalyst with effectively restrained electron–hole recombination is reported. By using microporous zeolites as a host and a hard template, ultrasmall Pd and PdS nanoparticles can be anchored separately onto the inner and outer surfaces of a hollow CdS structure. The metallic Pd pulls the photoexcited electrons away from CdS while PdS pushes the holes for more thorough oxidation of the sacrificial agent. The final Pd@CdS/PdS product exhibits superior visible‐light‐driven photocatalytic H2 evolution rate of up to 144.8 mmol h−1 g−1. This is among the highest values of all the reported CdS‐based catalysts. This synthetic approach may be used to fabricate other highly efficient catalysts with spatially separated cocatalysts. Hollow porous CdS with spatially separated Pd and PdS cocatalysts is synthesized by a versatile approach using microporous zeolites as the hosts and templates. The charge recombination can be greatly suppressed by the push and pull actions of the cocatalysts. The Pd@CdS/PdS product exhibits an impressive photocatalytic H2 evolution rate of 144.8 mmol h−1 g−1.
doi_str_mv 10.1002/adma.201804368
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2112613697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2112613697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3738-5a540248057f58ad6a7aceca461a4a070f57393d7a60981f6b52d3d0047ff6003</originalsourceid><addsrcrecordid>eNqFkEtLw0AURgdRbK1uXUrEjZvUO--ZZaiPChUL6nqYJjPYknRqJqH035vSWsGNq7s59_BxELrEMMQA5M4WlR0SwAoYFeoI9TEnOGWg-THqg6Y81YKpHjqLcQEAWoA4RT0KhBPNVR9dZ8k4lGVYJ9NQhzYmo-ItmX6GJuS2seUmNufoxNsyuov9HaCPx4f30TidvD49j7JJmlNJVcotZ0CYAi49V7YQVtrc5ZYJbJkFCZ5LqmkhrQCtsBczTgpaADDpvQCgA3S7867q8NW62JhqHnNXlnbpumGGYEwEpkLLDr35gy5CWy-7dR1FAYRSjHTUcEfldYixdt6s6nll643BYLbxzDaeOcTrHq722nZWueKA_9TqAL0D1vPSbf7Rmez-JfuVfwNiZHdm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2130068842</pqid></control><display><type>article</type><title>A Hollow Porous CdS Photocatalyst</title><source>Access via Wiley Online Library</source><creator>Sun, Qiming ; Wang, Ning ; Yu, Jihong ; Yu, Jimmy C.</creator><creatorcontrib>Sun, Qiming ; Wang, Ning ; Yu, Jihong ; Yu, Jimmy C.</creatorcontrib><description>Efficient light harvesting and charge separation are of great importance in solar‐energy conversion on photocatalysts. Herein, the synthesis of a novel hollow porous CdS photocatalyst with effectively restrained electron–hole recombination is reported. By using microporous zeolites as a host and a hard template, ultrasmall Pd and PdS nanoparticles can be anchored separately onto the inner and outer surfaces of a hollow CdS structure. The metallic Pd pulls the photoexcited electrons away from CdS while PdS pushes the holes for more thorough oxidation of the sacrificial agent. The final Pd@CdS/PdS product exhibits superior visible‐light‐driven photocatalytic H2 evolution rate of up to 144.8 mmol h−1 g−1. This is among the highest values of all the reported CdS‐based catalysts. This synthetic approach may be used to fabricate other highly efficient catalysts with spatially separated cocatalysts. Hollow porous CdS with spatially separated Pd and PdS cocatalysts is synthesized by a versatile approach using microporous zeolites as the hosts and templates. The charge recombination can be greatly suppressed by the push and pull actions of the cocatalysts. The Pd@CdS/PdS product exhibits an impressive photocatalytic H2 evolution rate of 144.8 mmol h−1 g−1.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201804368</identifier><identifier>PMID: 30252958</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>cadmium sulfide ; Catalysis ; Catalysts ; charge separation ; Energy conversion ; hydrogen evolution ; Materials science ; Nanoparticles ; Oxidation ; Photocatalysis ; Photocatalysts ; Zeolites</subject><ispartof>Advanced materials (Weinheim), 2018-11, Vol.30 (45), p.e1804368-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3738-5a540248057f58ad6a7aceca461a4a070f57393d7a60981f6b52d3d0047ff6003</citedby><cites>FETCH-LOGICAL-c3738-5a540248057f58ad6a7aceca461a4a070f57393d7a60981f6b52d3d0047ff6003</cites><orcidid>0000-0001-9886-3725</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201804368$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201804368$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30252958$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Qiming</creatorcontrib><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Yu, Jihong</creatorcontrib><creatorcontrib>Yu, Jimmy C.</creatorcontrib><title>A Hollow Porous CdS Photocatalyst</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Efficient light harvesting and charge separation are of great importance in solar‐energy conversion on photocatalysts. Herein, the synthesis of a novel hollow porous CdS photocatalyst with effectively restrained electron–hole recombination is reported. By using microporous zeolites as a host and a hard template, ultrasmall Pd and PdS nanoparticles can be anchored separately onto the inner and outer surfaces of a hollow CdS structure. The metallic Pd pulls the photoexcited electrons away from CdS while PdS pushes the holes for more thorough oxidation of the sacrificial agent. The final Pd@CdS/PdS product exhibits superior visible‐light‐driven photocatalytic H2 evolution rate of up to 144.8 mmol h−1 g−1. This is among the highest values of all the reported CdS‐based catalysts. This synthetic approach may be used to fabricate other highly efficient catalysts with spatially separated cocatalysts. Hollow porous CdS with spatially separated Pd and PdS cocatalysts is synthesized by a versatile approach using microporous zeolites as the hosts and templates. The charge recombination can be greatly suppressed by the push and pull actions of the cocatalysts. The Pd@CdS/PdS product exhibits an impressive photocatalytic H2 evolution rate of 144.8 mmol h−1 g−1.</description><subject>cadmium sulfide</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>charge separation</subject><subject>Energy conversion</subject><subject>hydrogen evolution</subject><subject>Materials science</subject><subject>Nanoparticles</subject><subject>Oxidation</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Zeolites</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLw0AURgdRbK1uXUrEjZvUO--ZZaiPChUL6nqYJjPYknRqJqH035vSWsGNq7s59_BxELrEMMQA5M4WlR0SwAoYFeoI9TEnOGWg-THqg6Y81YKpHjqLcQEAWoA4RT0KhBPNVR9dZ8k4lGVYJ9NQhzYmo-ItmX6GJuS2seUmNufoxNsyuov9HaCPx4f30TidvD49j7JJmlNJVcotZ0CYAi49V7YQVtrc5ZYJbJkFCZ5LqmkhrQCtsBczTgpaADDpvQCgA3S7867q8NW62JhqHnNXlnbpumGGYEwEpkLLDr35gy5CWy-7dR1FAYRSjHTUcEfldYixdt6s6nll643BYLbxzDaeOcTrHq722nZWueKA_9TqAL0D1vPSbf7Rmez-JfuVfwNiZHdm</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Sun, Qiming</creator><creator>Wang, Ning</creator><creator>Yu, Jihong</creator><creator>Yu, Jimmy C.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9886-3725</orcidid></search><sort><creationdate>20181101</creationdate><title>A Hollow Porous CdS Photocatalyst</title><author>Sun, Qiming ; Wang, Ning ; Yu, Jihong ; Yu, Jimmy C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3738-5a540248057f58ad6a7aceca461a4a070f57393d7a60981f6b52d3d0047ff6003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>cadmium sulfide</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>charge separation</topic><topic>Energy conversion</topic><topic>hydrogen evolution</topic><topic>Materials science</topic><topic>Nanoparticles</topic><topic>Oxidation</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Qiming</creatorcontrib><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Yu, Jihong</creatorcontrib><creatorcontrib>Yu, Jimmy C.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Qiming</au><au>Wang, Ning</au><au>Yu, Jihong</au><au>Yu, Jimmy C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hollow Porous CdS Photocatalyst</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2018-11-01</date><risdate>2018</risdate><volume>30</volume><issue>45</issue><spage>e1804368</spage><epage>n/a</epage><pages>e1804368-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Efficient light harvesting and charge separation are of great importance in solar‐energy conversion on photocatalysts. Herein, the synthesis of a novel hollow porous CdS photocatalyst with effectively restrained electron–hole recombination is reported. By using microporous zeolites as a host and a hard template, ultrasmall Pd and PdS nanoparticles can be anchored separately onto the inner and outer surfaces of a hollow CdS structure. The metallic Pd pulls the photoexcited electrons away from CdS while PdS pushes the holes for more thorough oxidation of the sacrificial agent. The final Pd@CdS/PdS product exhibits superior visible‐light‐driven photocatalytic H2 evolution rate of up to 144.8 mmol h−1 g−1. This is among the highest values of all the reported CdS‐based catalysts. This synthetic approach may be used to fabricate other highly efficient catalysts with spatially separated cocatalysts. Hollow porous CdS with spatially separated Pd and PdS cocatalysts is synthesized by a versatile approach using microporous zeolites as the hosts and templates. The charge recombination can be greatly suppressed by the push and pull actions of the cocatalysts. The Pd@CdS/PdS product exhibits an impressive photocatalytic H2 evolution rate of 144.8 mmol h−1 g−1.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30252958</pmid><doi>10.1002/adma.201804368</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9886-3725</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2018-11, Vol.30 (45), p.e1804368-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2112613697
source Access via Wiley Online Library
subjects cadmium sulfide
Catalysis
Catalysts
charge separation
Energy conversion
hydrogen evolution
Materials science
Nanoparticles
Oxidation
Photocatalysis
Photocatalysts
Zeolites
title A Hollow Porous CdS Photocatalyst
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A26%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hollow%20Porous%20CdS%20Photocatalyst&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Sun,%20Qiming&rft.date=2018-11-01&rft.volume=30&rft.issue=45&rft.spage=e1804368&rft.epage=n/a&rft.pages=e1804368-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201804368&rft_dat=%3Cproquest_cross%3E2112613697%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2130068842&rft_id=info:pmid/30252958&rfr_iscdi=true