A Hollow Porous CdS Photocatalyst
Efficient light harvesting and charge separation are of great importance in solar‐energy conversion on photocatalysts. Herein, the synthesis of a novel hollow porous CdS photocatalyst with effectively restrained electron–hole recombination is reported. By using microporous zeolites as a host and a h...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2018-11, Vol.30 (45), p.e1804368-n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Efficient light harvesting and charge separation are of great importance in solar‐energy conversion on photocatalysts. Herein, the synthesis of a novel hollow porous CdS photocatalyst with effectively restrained electron–hole recombination is reported. By using microporous zeolites as a host and a hard template, ultrasmall Pd and PdS nanoparticles can be anchored separately onto the inner and outer surfaces of a hollow CdS structure. The metallic Pd pulls the photoexcited electrons away from CdS while PdS pushes the holes for more thorough oxidation of the sacrificial agent. The final Pd@CdS/PdS product exhibits superior visible‐light‐driven photocatalytic H2 evolution rate of up to 144.8 mmol h−1 g−1. This is among the highest values of all the reported CdS‐based catalysts. This synthetic approach may be used to fabricate other highly efficient catalysts with spatially separated cocatalysts.
Hollow porous CdS with spatially separated Pd and PdS cocatalysts is synthesized by a versatile approach using microporous zeolites as the hosts and templates. The charge recombination can be greatly suppressed by the push and pull actions of the cocatalysts. The Pd@CdS/PdS product exhibits an impressive photocatalytic H2 evolution rate of 144.8 mmol h−1 g−1. |
---|---|
ISSN: | 0935-9648 1521-4095 |
DOI: | 10.1002/adma.201804368 |