Presence of organohalide-respiring bacteria in and around a permeable reactive barrier at a trichloroethylene-contaminated Superfund site
Trichloroethylene (TCE) is one of the most common groundwater contaminants in the United States; however clean-up efforts are a challenge due to its physical and chemical properties. TCE and several of its degradation products were detected in the groundwater of the Beaver Dam Road Landfill site (Be...
Gespeichert in:
Veröffentlicht in: | Environmental pollution (1987) 2018-12, Vol.243 (Pt A), p.766-776 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Trichloroethylene (TCE) is one of the most common groundwater contaminants in the United States; however clean-up efforts are a challenge due to its physical and chemical properties. TCE and several of its degradation products were detected in the groundwater of the Beaver Dam Road Landfill site (Beltsville, MD) at concentrations above accepted maximum contaminant levels. A permeable reactive barrier (i.e., biowall) was installed to remediate the groundwater. Microbial infiltration and colonization of the biowall with native site bacteria was expected to occur. An array of molecular biological tools was applied to survey the microbial community for presence of organohalide-respiring microorganisms at the site. Microorganisms belonging to methanogens, acetogens, sulfate-reducing bacteria, and chlorinated aliphatic hydrocarbon-metabolizing bacteria were identified, thus making way for the application of the microbial populations in the biowall bioaugmentation efforts. In concomitant laboratory studies, molecular approaches were used to monitor continuously-fed column reactors containing saturated biowall material spiked with a commercially-available, Dehalococcoides-containing culture (SDC-9), with or without zero-valent iron (ZVI) shavings. The column without ZVI had the highest abundance of Dehalococcoides spp. (2.7 × 106 cells g−1 material, S.D. = 3.8 × 105 cells g−1 material), while the addition of ZVI did not affect the overall population. Although the addition of ZVI and biostimulation did change ratios of the Dehalococcoides strains, the results suggests that if ZVI would be applied as a biowall material amendment, biostimulation would not be required to maintain a Dehalococcoides population. These experimental results will be utilized in future remediation and/or biowall expansion plans to utilize the natural resources most effectively at the biowall site.
[Display omitted]
•Organohalide-respiring bacteria were found at a TCE-contaminated Superfund site.•A mulch-compost biowall was installed for groundwater bioremediation.•Columns with biowall material were able to support a Dehalococcoides population.•Use of zero valent iron changed the Dehalococcoides makeup in the biowall material. |
---|---|
ISSN: | 0269-7491 1873-6424 |
DOI: | 10.1016/j.envpol.2018.08.095 |