Fluctuations of Energy-Relaxation Times in Superconducting Qubits

Superconducting qubits are an attractive platform for quantum computing since they have demonstrated high-fidelity quantum gates and extensibility to modest system sizes. Nonetheless, an outstanding challenge is stabilizing their energy-relaxation times, which can fluctuate unpredictably in frequenc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2018-08, Vol.121 (9), p.090502-090502, Article 090502
Hauptverfasser: Klimov, P V, Kelly, J, Chen, Z, Neeley, M, Megrant, A, Burkett, B, Barends, R, Arya, K, Chiaro, B, Chen, Yu, Dunsworth, A, Fowler, A, Foxen, B, Gidney, C, Giustina, M, Graff, R, Huang, T, Jeffrey, E, Lucero, Erik, Mutus, J Y, Naaman, O, Neill, C, Quintana, C, Roushan, P, Sank, Daniel, Vainsencher, A, Wenner, J, White, T C, Boixo, S, Babbush, R, Smelyanskiy, V N, Neven, H, Martinis, John M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Superconducting qubits are an attractive platform for quantum computing since they have demonstrated high-fidelity quantum gates and extensibility to modest system sizes. Nonetheless, an outstanding challenge is stabilizing their energy-relaxation times, which can fluctuate unpredictably in frequency and time. Here, we use qubits as spectral and temporal probes of individual two-level-system defects to provide direct evidence that they are responsible for the largest fluctuations. This research lays the foundation for stabilizing qubit performance through calibration, design, and fabrication.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.121.090502