Three new Strandberg-type phenylphosphomolybdate supports for immobilizing horseradish peroxidase and their catalytic oxidation performances
Three organic-inorganic hybrids containing Strandberg-type phenylphosphomolybdate anion [(C6H5PO3)2Mo5O15]4- with phenylphosphonate (PhP) centers, transition metal (TM) ions and 2,2'-biimidazole (H2biim) ligand, formulated as [(TM(H2biim)2)2(C6H5PO3)2Mo5O15]·H2O (TM = Co and Cu, abbreviated as...
Gespeichert in:
Veröffentlicht in: | Dalton transactions : an international journal of inorganic chemistry 2018-10, Vol.47 (39), p.14060-14069 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Three organic-inorganic hybrids containing Strandberg-type phenylphosphomolybdate anion [(C6H5PO3)2Mo5O15]4- with phenylphosphonate (PhP) centers, transition metal (TM) ions and 2,2'-biimidazole (H2biim) ligand, formulated as [(TM(H2biim)2)2(C6H5PO3)2Mo5O15]·H2O (TM = Co and Cu, abbreviated as Co-(PhP)2Mo5 and Cu-(PhP)2Mo5, respectively) and ([Ni(H2biim)3])2[(C6H5PO3)2Mo5O15]·2H2O (abbreviated as Ni-(PhP)2Mo5), were self-assembled by simple hydrothermal methods and were systematically characterized through single-crystal X-ray diffraction and other physicochemical and spectroscopic methods, which demonstrated that TM-H2biim complexes were firstly introduced into Strandberg-type organophosphomolybdate skeletons. Selecting the oxidation of cyclohexanol to cyclohexanone as a model reaction, using H2O2 as an oxidant, the catalytic oxidation activities of the Strandberg-type compounds were firstly evaluated. More importantly, these TM-(PhP)2Mo5 (TM = Co, Cu, Ni) compounds were employed to immobilize horseradish peroxidase (HRP), and showed high adsorption capacities for HRP. Laser scanning confocal microscope images showed that HRP adsorbed on the surfaces of the TM-(PhP)2Mo5 supports. Application of immobilized enzyme HRP/TM-(PhP)2Mo5 for the detection of H2O2 is also discussed. |
---|---|
ISSN: | 1477-9226 1477-9234 |
DOI: | 10.1039/c8dt03102a |